

BYV54HR

Aerospace 40 A - 200 V fast recovery rectifier

Datasheet - production data

Features

- Very small conduction losses
- Negligible switching losses
- High surge current capability
- High avalanche energy capability
- Hermetic package
- Package mass: 10 g
- ESCC qualified

Description

Packaged in a hermetic TO-254AA, this device is intended for use in medium voltage, high frequency switching mode power supplies, high frequency DC to DC converters, and other aerospace applications.

The complete ESCC specification for this device is available from the European space agency web site. ST guarantees full compliance of qualified parts with such ESCC detailed specifications.

Figure 1. Device configuration

Table 1. Device summary⁽¹⁾

Order code	ESCC detailed specification	Quality level	Lead finish	EPPL	I _F (AV)	V _{RRM}	Tj (max)	V _F (max)
BYV54S200HY1	-	Engineering model	Gold	-	40	200	150	1.10
BYV54S200HYT	5103/031/05	Flight part	Solder dip	Y	40	200	150	1.10

1. Contact ST sales office for information about the specific conditions for products in die form.

1 Characteristics

Table 2.	Absolute	maximum	ratings
	/		· a · · · g o

Symbol	Characteristic	Value	Unit
I _{FSM}	Forward surge current ⁽¹⁾	400	А
V _{RRM}	Repetitive peak reverse voltage ⁽²⁾	200	V
I _o	Average output rectified current (50% duty cycle): ⁽³⁾	40	А
I _{F(RMS)}	Forward rms current	60	А
T _{OP}	Operating case temperature range ⁽⁴⁾	-55 to +150	°C
TJ	Junction temperature	+150	°C
T _{STG}	Storage temperature range ⁽⁴⁾	-55 to +150	°C
T _{SOL}	Soldering temperature ⁽⁵⁾	+260	°C

1. Sinusoidal pulse of 10 ms duration

2. Pulsed, duration 5 ms, F = 50 Hz

3. For $T_{case} > +99$ °C, derate linearly to 0 A at +150°C.

4. For devices with hot solder dip lead finish all testing performed at T_{amb} > +125 °C are carried out in a 100% inert atmosphere.

5. Duration 10 seconds maximum at a distance of not less than 1.5 mm from the device body and the same lead shall not be re-soldered until 3 minutes have elapsed.

Table 3. Thermal resistance

Symbol	Parameter	Value	Unit
R _{th (j-c)}	Junction to case ⁽¹⁾	1.0	°C/W

1. Package mounted on infinite heatsink.

Symbol	Chanactariatia	MIL-STD-750	Test conditions ⁽¹⁾	Lin	Units	
	Characteristic	test method	lest conditions "	Min.	Max.	Units
I _R	Reverse current	4016	DC method, $V_R = 200 V$	-	50	μA
V _{F1} ⁽²⁾	Forward voltage	Forward voltage 4011		-	0.95	V
$V_{F2}^{(2)}$	Forward vollage	4011	Pulse method, I _F = 30 A	-	1.1	V
V_{BR}	Breakdown voltage	4021	I _R = 100 μA	200	-	V
С	Capacitance	4001	V _R = 10 V, F = 1 MHz	-	400	pF
t _{rr}	Reverse recovery time	4031	I _F = 1 A, V _R = 30 V, dI _F /dt = -50 A/μs	-	60	ns
$Z_{th(j-c)}^{(3)}$	Relative thermal impedance, junction to case	3101	I_{H} = 15 to 40 A, t _H = 50 ms I_{M} = 50 mA, t _{md} = 100 µs		ulate F ⁽⁴⁾	°C/W

1. Testing performed with both anode terminals 2 and 3 tied together

2. Pulse width \leq 680 µs, duty cycle \leq 2%

3. Performed only during screening tests parameter drift values (initial measurements for HTRB), go-no-go.

4. The limits for ΔVF shall be defined by the manufacturer on every lot in accordance with MIL-STD-750 Method 3101 and shall guarantee the $R_{th(j-c)}$ limits specified in maximum ratings.

Symbol		MIL-STD-750	Test conditions ⁽¹⁾	Limits		11
	Characteristic	test method	lest conditions "	Min.	Max.	Units
I _R	Reverse current	4016	T _{case} = +125 (+0, -5) °C DC method, V _R = 200 V	-	40	mA
V _{F1} ⁽²⁾		4011	$T_{case} = +125 (+0, -5) °C$ pulse method, I _F = 20 A	-	0.85	V
V F1	Forward voltage		$T_{case} = -55 (+0, -5) °C$ pulse method, I _F = 20 A	-	1.15	V
V _{F2} ⁽²⁾	V _{F2} ⁽²⁾		$T_{case} = +125 (+0, -5) °C$ pulse method, I _F = 30 A		1.0	

Table 5. Electrical measurements at high and low temperatures (per diode)

1. Read and record measurements shall be performed on a sample of 5 components with 0 failures allowed. Alternatively a 100% inspection may be performed.

2. Pulse width \leq 680 µs, duty cycle \leq 2%

To evaluate the conduction losses use the following equation:

 $P = 0.74 \text{ x }_{\text{IF}(\text{AV})} + 1.00 \text{ x }_{\text{F}^{2}(\text{RMS})}$

2 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

2.1 TO-254AA information

a. The terminal identification is specified by the device configuration. See *Figure 1* for terminal connections

Defense	Dimension ir	n millimeters	Dimension in inches		
Reference -	Min.	Max.	Min.	Max.	
A	13.59	13.84	0.535	0.545	
В	13.59	13.84	0.535	0.545	
С	20.07	20.32	0.790	0.800	
D	6.3	6.7	0.248	0.264	
E	1	3.9	0.039	0.154	
ØF	3.5	3.9	0.138	0.154	
G	16.89	17.4	0.665	0.685	
Н	6.86	BSC	0.270 BSC		
ØI ⁽¹⁾	0.89	1.14	0.035	0.045	
J	3.81	BSC	0.150 BSC		
К	3.81	BSC	0.150 BSC		
L	12.95	14.5	0.510	0.571	
ØM	3.05	Тур.	0.120 Тур.		
Ν	-	0.71	-	0.028	
R1 ⁽²⁾	-	1	-	0.039	
R2 ⁽³⁾	1.65	Тур.	0.0	65	

Table 6. TO-254AA package mechanical data

1. 3 locations

2. Radius of heatsink flange corner - 4 locations

3. Radius of body corner - 4 locations

3 Ordering information

Order code	ESCC detailed specification	Package	Lead finish	Comment	Marking	Mass	EPPL	Packing
BYV54S200HY1			Gold		BYV54S200HY1			Strip
BYV54S200HYT	5103/031/05	TO-254AA	Solder dip	Single die	510303105 + BeO	10 g	Y	pack

Table 7. Ordering information⁽¹⁾

1. Contact ST sales office for information about the specific conditions for products in die form.

4 Revision history

Date	Revision	Changes
08-Jul-2010	1	First issue.
19-Mar-2014	2	Updated Table 1: Device summary and Table 7: Ordering information.
10-Sep-2015	3	Update Features. Reformatted to current standards.

Table 8. Document revision history

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

DocID17416 Rev 3