SN74BCT2245 OCTAL TRANSCEIVER AND LINE/MOS DRIVER WITH 3-STATE OUTPU

DB, DW, N, OR NS PACKAGE (TOP VIEW)

DIR [

A1 2

A2 🛮 3

A3 ∏4

A4 ∏5

A5 Π6

П8 Α8 П9

A6

A7

GND ∏10

SCBS102C - FEBRUARY 1992 - REVISED MARCH 2003

] v_{cc}

19 OE

18 🛮 B1

15 B4

14 **∏** B5 13 **|** B6

12 **∏** B7

11

∏ B8

20

17 ∏ B2 16 | B3

- Operating Voltage Range of 4.5 V to 5.5 V
- State-of-the-Art BiCMOS Design Significantly Reduces I_{CCZ}
- B Port Has Equivalent 33- Ω Series **Resistors, So No External Resistors** Are Required
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

description/ordering information

The SN74BCT2245 octal transceiver and line/ MOS driver is designed for asynchronous communication between data buses.

The device allows data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (\overline{OE}) input can disable the devices so that both buses are effectively isolated.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The B-port outputs, which are designed to source or sink up to 12 mA, include $33-\Omega$ series resistors to reduce overshoot and undershoot.

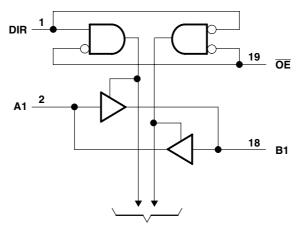
ORDERING INFORMATION

T _A	PACKA	GE [†]	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	PDIP – N Tube SN74BC	SN74BCT2245N	SN74BCT2245N	
	COIC DW	Tube	SN74BCT2245DW	DOT0045
0°C to 70°C	SOIC – DW	Tape and reel	SN74BCT2245DWR	BCT2245
	SOP - NS	Tape and reel	SN74BCT2245NSR	BCT2245
	SSOP – DB	Tape and reel	SN74BCT2245DBR	BA245

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLE

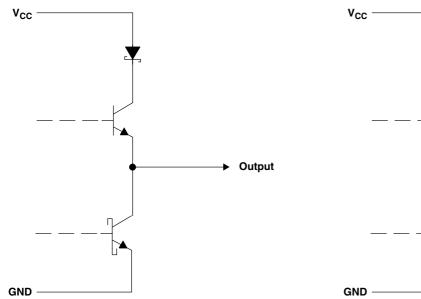
INP	UTS	ODEDATION
ŌĒ	DIR	OPERATION
L	L	B data to A bus
L	Н	A data to B bus
Н	X	Isolation

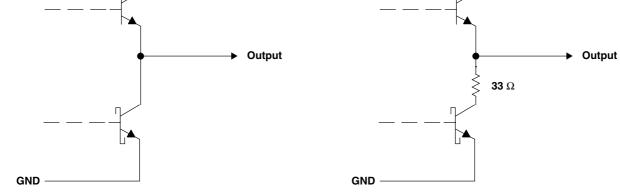


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SCBS102C - FEBRUARY 1992 - REVISED MARCH 2003

logic diagram (positive logic)




To Seven Other Channels

schematic of A-port outputs

schematic of B-port outputs

33 Ω

All resistor values shown are nominal.

SN74BCT2245 OCTAL TRANSCEIVER AND LINE/MOS DRIVER WITH 3-STATE OUTPUTS

SCBS102C - FEBRUARY 1992 - REVISED MARCH 2003

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}		-0.5	V to $7\ V$
Input voltage range, V _I (see Note 1)		-0.5	V to 7 V $$
Voltage range applied to any output in the disable	ed or power-off state, V _O	–0.5 V	to 5.5 V
Voltage range applied to any output in the high st	tate, V _O	-0.5 \	V to V _{CC}
Input clamp current, I _{IK}			-30 mA
Current into any output in the low state, I _O			. 60 mA
Package thermal impedance, θ_{JA} (see Note 2): Γ	OB package		70°C/W
	DW package		58°C/W
N	N package		69°C/W
N	NS package		60°C/W
Storage temperature range, T _{sto}		-65°C t	o 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 3)

			MIN	NOM	MAX	UNIT
V_{CC}	Supply voltage		4.5	5	5.5	V
V_{IH}	High-level input voltage		2			٧
V_{IL}	Low-level input voltage				8.0	V
I _{IK}	Input clamp current				-18	mA
	High lavel autout august	A port			-3	A
Іон	High-level output current	B port			-12	mA
	Lavidaval autorit aviirant	A port			24	
I _{OL}	Low-level output current	B port			12	mA
T _A	Operating free-air temperature		0	•	70	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

SN74BCT2245 OCTAL TRANSCEIVER AND LINE/MOS DRIVER WITH 3-STATE OUTPUTS

SCBS102C - FEBRUARY 1992 - REVISED MARCH 2003

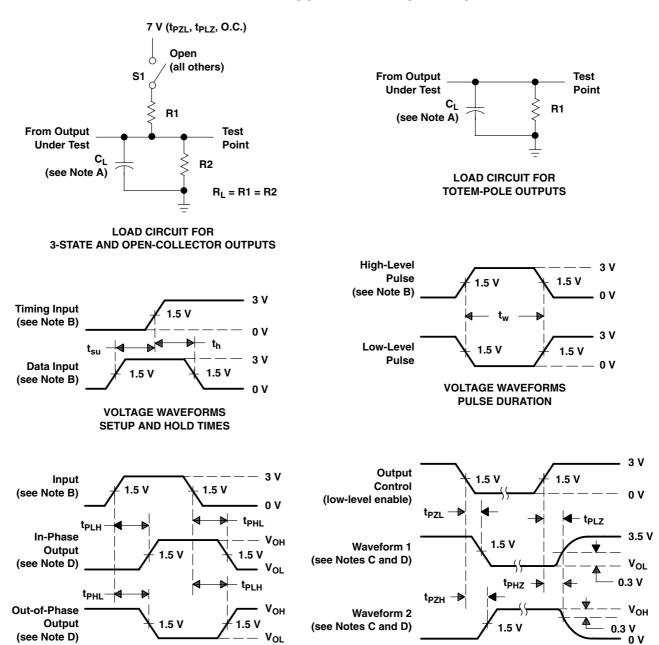
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	TYP†	MAX	UNIT		
V_{IK}		$V_{CC} = 4.5 \text{ V},$	I _I = -18 mA			-1.2	٧		
	At	V 45V	I _{OH} = −1 mA	2.5	3.4				
.,	A port	V _{CC} = 4.5 V	$I_{OH} = -3 \text{ mA}$	2.4	3.3		.,		
V _{OH}	D mant	V 45V	$I_{OH} = -1 \text{ mA}$	2.4	3.3		V		
	B port	$V_{CC} = 4.5 \text{ V}$	$I_{OH} = -12 \text{ mA}$	2	3.2				
	A port	$V_{CC} = 4.5 V$,	$I_{OL} = 24 \text{ mA}$		0.35	0.5			
V_{OL}	Danad	V 45V	I _{OL} = 1 mA			0.5	V		
	B port	V _{CC} = 4.5 V	I _{OL} = 12 mA			8.0			
lį		$V_{CC} = 5.5 V$,	V _I = 5.5 V			0.1	mA		
. +	A or B port	V 55V	V 07V			70	•		
I _{IH} ‡	Control input	$V_{CC} = 5.5 \text{ V},$	$V_1 = 2.7 \text{ V}$			20	μΑ		
I _{IL} ‡		$V_{CC} = 5.5 V$,	V _I = 0.5 V			-0.65	mA		
. 8	A port	V 55V	ν. ο	-60		-150	4		
l _{OS} §	B port	$V_{CC} = 5.5 \text{ V},$	$V_O = 0$	-100		-225	mA		
	A to B	V 55V	Outrots and		63	100	4		
I _{CCL}	B to A	$V_{CC} = 5.5 \text{ V},$	Outputs open		40	64	mA		
	A to B	V 55V	Outrots and		37	59	4		
I _{CCH}	B to A	$V_{CC} = 5.5 \text{ V},$	Outputs open		29	46	mA		
	A to B	V 55V	Outputs and		9	15			
I _{CCZ}	B to A	$V_{CC} = 5.5 \text{ V},$	Outputs open		8	14	mA		
Ci	Control input	V _{CC} = 5 V,	V _I = 2.5 V or 0.5 V		7		pF		
_	A to B	V 5.V	V 05V 2505V		9		.		
C _{io}	B to A	$V_{CC} = 5 V$,	$V_0 = 2.5 \text{ V or } 0.5 \text{ V}$		12		pF		

 $^{^{\}dagger}$ All typical values are at V_{CC} = 5 V, T_{A} = 25°C.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, C_L = 50 pF (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	TO	V ₀	_{CC} = 5 V _A = 25°C	,	MIN	MAX	UNIT
	(INPUT)	(OUTPUT)	MIN	TYP	MAX			
	А	В	1	3.3	4.9	1	5.8	
t _{PLH}	В	Α	1.7	4.2	6.1	1.7	7	ns
_	А	В	2.5	5.1	6.9	2.5	7.8	
t _{PHL}	В	Α	2.2	4.7	7.1	2.2	7.7	ns
		В	3.2	6.2	8.6	3.2	9.9	
t _{PZH}	ŌĒ	Α	3.8	7.2	9.5	3.8	11.1	ns
	ŌĒ	В	5.6	8.3	10.9	5.6	12.2	
t _{PZL}	OE	Α	4.2	7.6	10.1	4.2	11.4	ns
	O.F.	В	2.6	5.2	7.1	2.6	8.2	
^Į PHZ	t _{PHZ} OE	Α	3.1	5.7	8	3.1	9.4	ns
	OF.	В	3.5	6	7.9	3.5	9.2	no
t _{PLZ}	ŌĒ	Α	2.3	4.7	6.5	2.3	7.6	ns


 $^{^{\}ddagger}$ For I/O ports, the parameters I_{IH} and I_{IL} include the off-state output current.

[§] Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

VOLTAGE WAVEFORMS

ENABLE AND DISABLE TIMES, 3-STATE OUTPUTS

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_I includes probe and jig capacitance.

VOLTAGE WAVEFORMS

PROPAGATION DELAY TIMES (see Note D)

- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $t_f = t_f \leq$ 2.5 ns, duty cycle = 50%.
- C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- D. The outputs are measured one at a time with one transition per measurement.
- $\hbox{E. \ \ } When \ measuring \ propagation \ delay \ times \ of \ 3-state \ outputs, \ switch \ S1 \ is \ open.$
- F. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
SN74BCT2245DW	ACTIVE	SOIC	DW	20	25	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	BCT2245	Samples
SN74BCT2245DWR	ACTIVE	SOIC	DW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	BCT2245	Samples
SN74BCT2245DWRE4	ACTIVE	SOIC	DW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	BCT2245	Samples
SN74BCT2245NSR	ACTIVE	so	NS	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	BCT2245	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

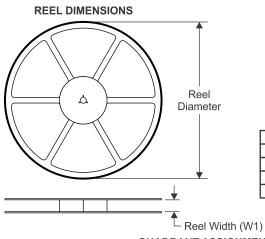
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

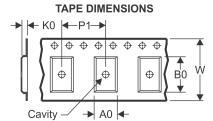
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

PACKAGE OPTION ADDENDUM

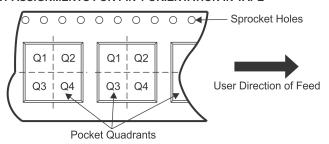
10-Dec-2020


continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

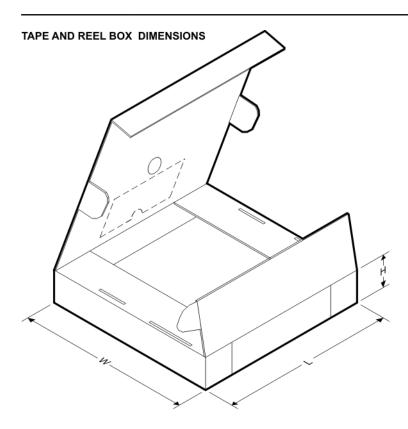
PACKAGE MATERIALS INFORMATION

www.ti.com 6-May-2017


TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



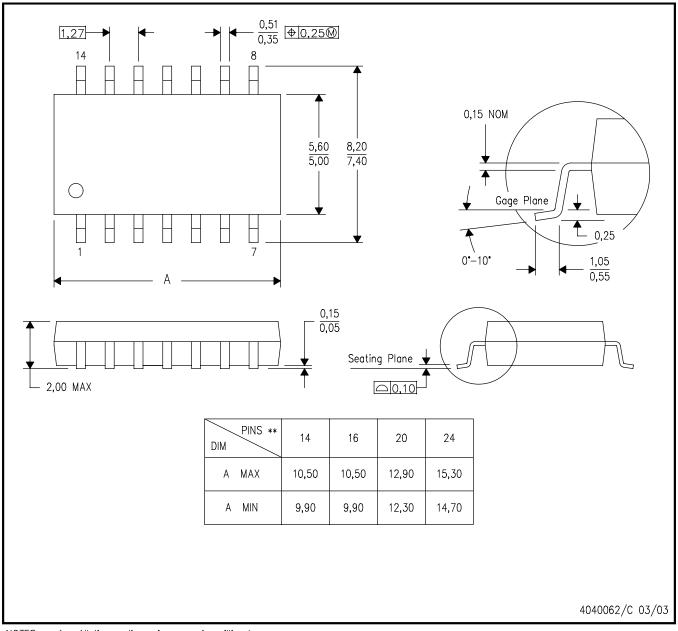
*All dimensions are nominal

	Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
,	SN74BCT2245DWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
	SN74BCT2245NSR	SO	NS	20	2000	330.0	24.4	8.4	13.0	2.5	12.0	24.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 6-May-2017

*All dimensions are nominal

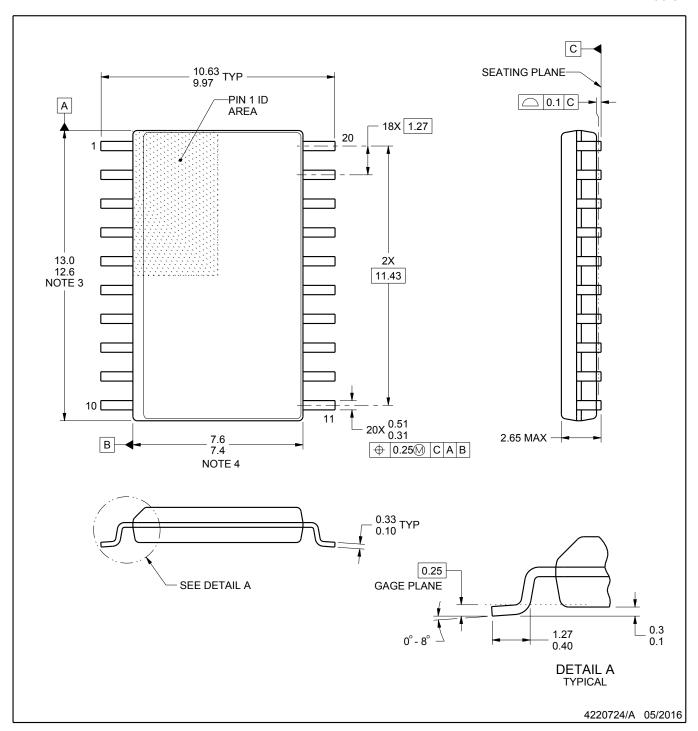

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74BCT2245DWR	SOIC	DW	20	2000	367.0	367.0	45.0
SN74BCT2245NSR	SO	NS	20	2000	367.0	367.0	45.0

MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

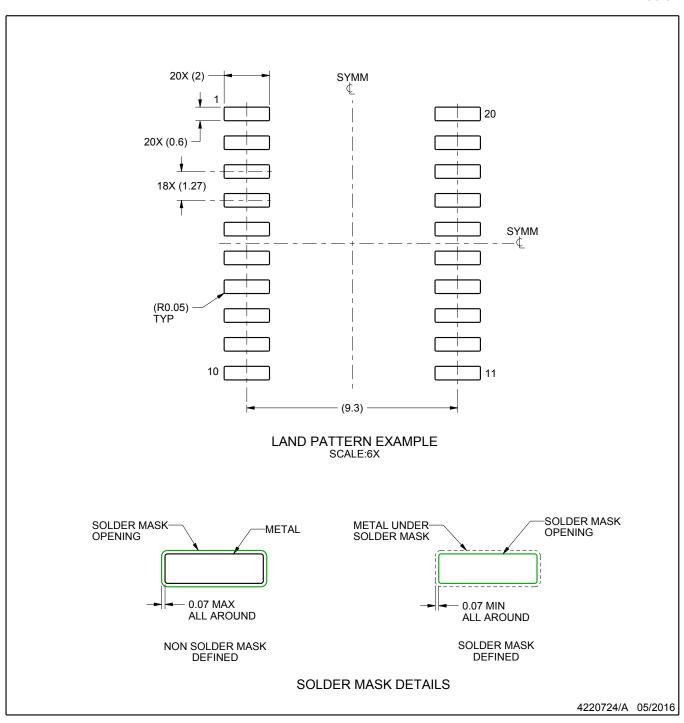
PLASTIC SMALL-OUTLINE PACKAGE


NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

SOIC

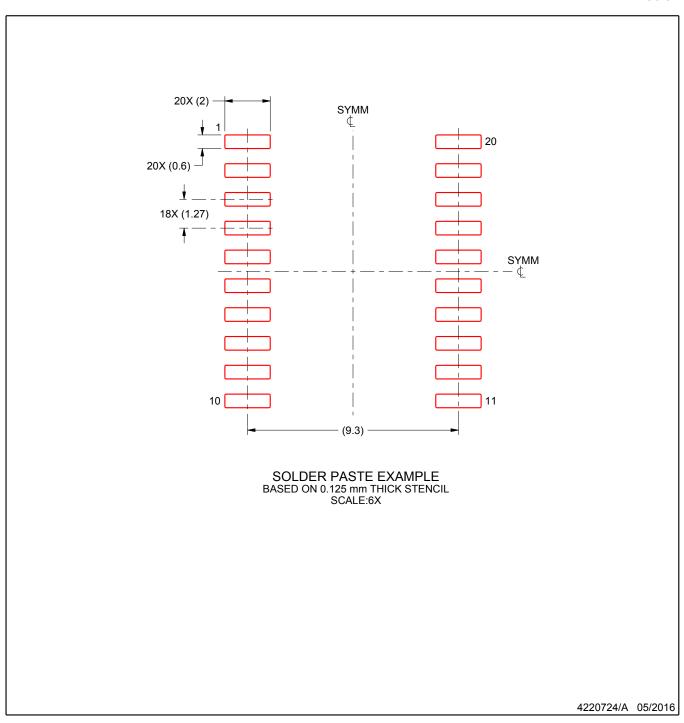
NOTES:


- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side.
- 5. Reference JEDEC registration MS-013.

SOIC


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOIC

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such Tl products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for Tl products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated