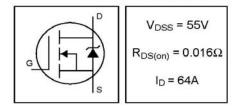
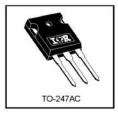
International

- Advanced Process Technology
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated
- Lead-Free

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.


The TO-247 package is preferred for commercialindustrial applications where higher power levels preclude the use of TO-220 devices. The TO-247 is similar but superior to the earlier TO-218 package because of its isolated mounting hole.


Absolute Maximum Ratings

PD-95422

IRFP048NPbF

HEXFET[®] Power MOSFET

	Parameter	Max.	Units	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	64		
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	45	A	
I _{DM}	Pulsed Drain Current 00	210		
$P_{D}@T_{C} = 25^{\circ}C$	Power Dissipation	140	W	
	Linear Derating Factor	0.90	W/°C	
V _{GS}	Gate-to-Source Voltage	± 20	V	
E _{AS}	Single Pulse Avalanche Energy 23	270	mJ	
AR	Avalanche Current [®]	32	A	
E _{AR}	Repetitive Avalanche Energy①	14	mJ	
d∨/dt	Peak Diode Recovery dv/dt 35	5.0	V/ns	
TJ	Operating Junction and	-55 to + 175		
T _{STG}	Storage Temperature Range		°C	
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)		
	Mounting torque, 6-32 or M3 srew	10 lbf•in (1.1N•m)		

Thermal Resistance

	Parameter	Тур.	Max.	Units
R _{eJC}	Junction-to-Case		1.1	
R _{0CS}	Case-to-Sink, Flat, Greased Surface	0.24		°CW
R _{BJA}	Junction-to-Ambient		40	

www.irf.com

1

International **IOR** Rectifier

Electrical Characteristics @ $T_J = 25^{\circ}C$ (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	55			V	$V_{GS} = 0V, I_D = 250 \mu A$
ΔV(BR)DSS/ΔTJ	Breakdown Voltage Temp. Coefficient		0.052	-	V/°C	Reference to 25°C, I _D = 1mA [®]
R _{DS(on)}	Static Drain-to-Source On-Resistance	—		0.016	Ω	V _{GS} = 10V, I _D = 37A ④
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
g fs	Forward Transconductance	22			S	$V_{DS} = 25V, I_{D} = 32A$ (s)
1	Drain-to-Source Leakage Current		<u>1777 - 19</u>	25		V _{DS} = 55V, V _{GS} = 0V
IDSS	Drail-to-Source Leakage Current		<u></u>	250	μA	$V_{DS} = 44V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
	Gate-to-Source Forward Leakage		<u></u>	100	n۸	V _{GS} = 20V
IGSS	Gate-to-Source Reverse Leakage	<u> </u>	<u></u>	-100	nA	V _{GS} = -20V
Qg	Total Gate Charge			89		I _D = 32A
Q _{gs}	Gate-to-Source Charge			20	nC	V _{DS} = 44V
Q _{gd}	Gate-to-Drain ("Miller") Charge		<u></u>	39		V _{GS} = 10V, See Fig. 6 and 13 @ ⑤
t _{d(on)}	Turn-On Delay Time		11			V _{DD} = 28V
tr	Rise Time		78			I _D = 32A
t _{d(off)}	Turn-Off Delay Time		32		ns	R _G = 5.1Ω
t _f	Fall Time		48			R _D = 0.85Ω, See Fig. 10 ④⑤
r	Internal Decision in the test sector		5.0			Between lead,
L _D	Internal Drain Inductance		5.0		- 211	6mm (0.25in.)
L _S	Internal Source Inductance		13		nH	from package
						and center of die contact
Ciss	Input Capacitance		1900			V _{GS} = 0V
Coss	Output Capacitance		620		pF	V _{DS} = 25V
C _{rss}	Reverse Transfer Capacitance		270			f = 1.0MHz, See Fig. 5⑤

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Мах.	Units	Conditions
Is	Continuous Source Current			45		MOSFET symbol
	(Body Diode)			40		showing the
I _{SM}	Pulsed Source Current		21	210	- A	integral reverse • 🗸 🕰
	(Body Diode) 🛈 🕲					p-n junction diode.
VSD	Diode Forward Voltage		ļ	1.3	V	$T_{J} = 25^{\circ}C$, $I_{S} = 37A$, $V_{GS} = 0V$ (4)
trr	Reverse Recovery Time		94	140	ns	T _J = 25°C, I _F = 32A
Qrr	Reverse RecoveryCharge	<u> </u>	360	540	nC	di/dt = 100A/µs ⊕⑤

Notes:

- $\ensuremath{\mathbb O}$ Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- 2 V_{DD} = 25V, starting $T_{\rm J}$ = 25°C, L = 530 μH $R_{\rm G}$ = 25 $\Omega,$ $I_{\rm AS}$ = 32A. (See Figure 12)
- $\textcircled{\mbox{0.5}}$ Pulse width \leq 300 $\mu s;$ duty cycle \leq 2%.

S Uses IRFZ48N data and test conditions

3 I_{SD} \leq 32A, di/dt \leq 250A/µs, V_{DD} \leq V_{(BR)DSS}, T_{\rm J} \leq 175°C

International **TOR** Rectifier

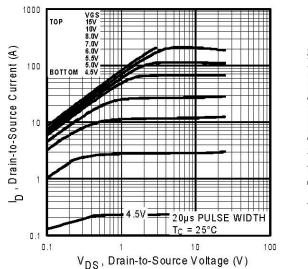


Fig 1. Typical Output Characteristics

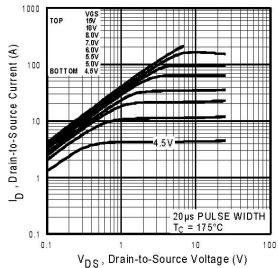


Fig 2. Typical Output Characteristics

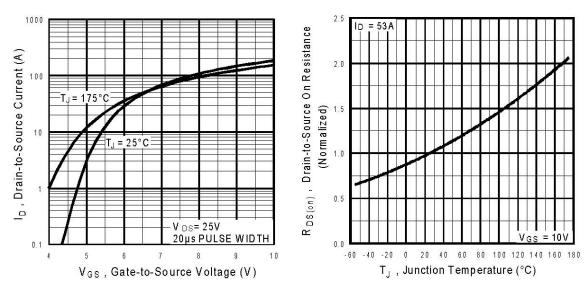
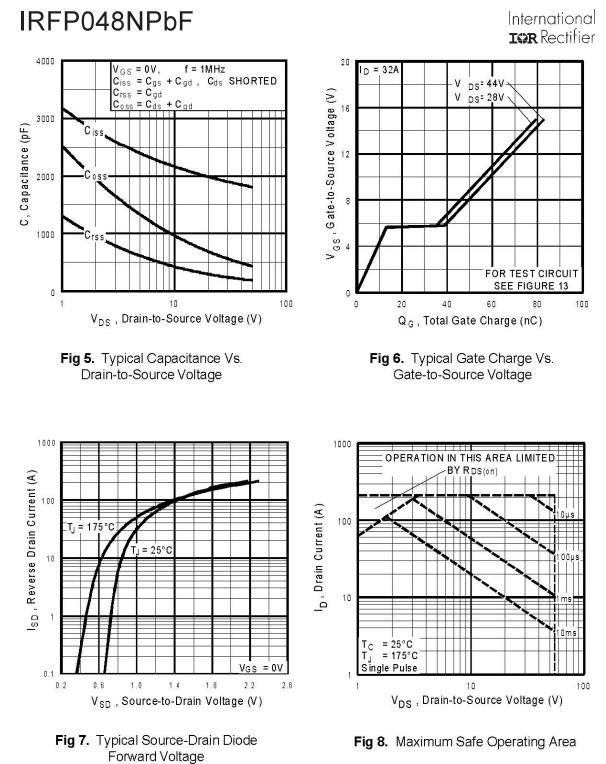
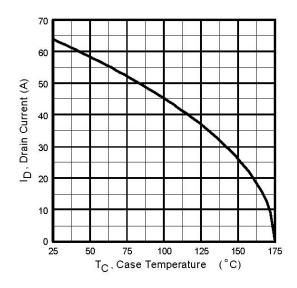
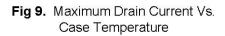



Fig 3. Typical Transfer Characteristics


Fig 4. Normalized On-Resistance Vs. Temperature



International

IRFP048NPbF

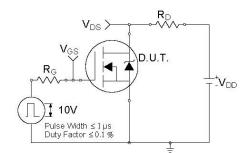


Fig 10a. Switching Time Test Circuit

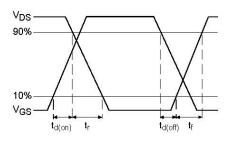


Fig 10b. Switching Time Waveforms

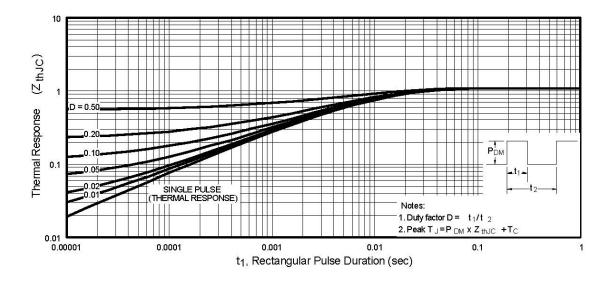


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

International

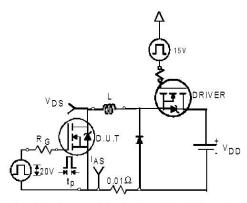


Fig 12a. Unclamped Inductive Test Circuit

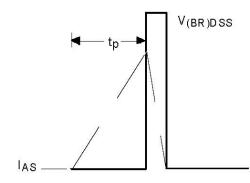


Fig 12b. Unclamped Inductive Waveforms

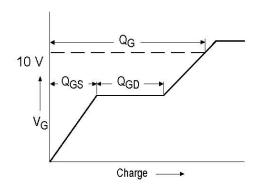


Fig 13a. Basic Gate Charge Waveform

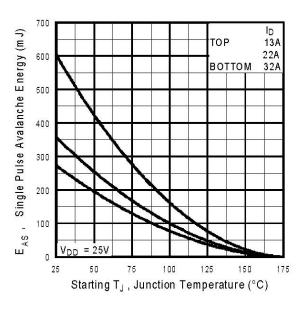


Fig 12c. Maximum Avalanche Energy Vs. Drain Current

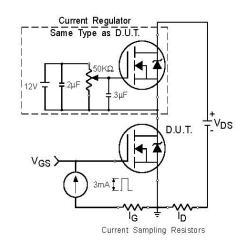
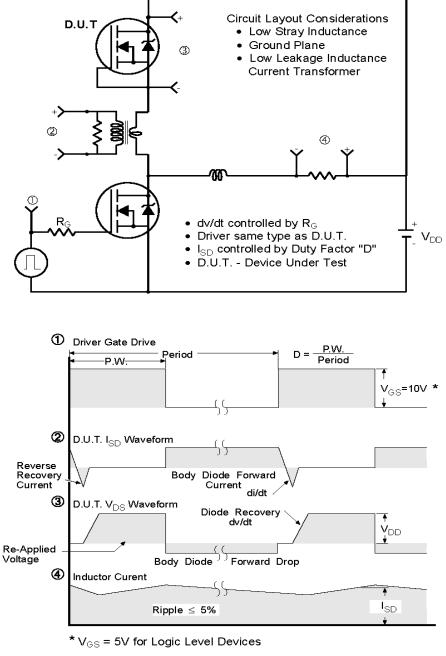
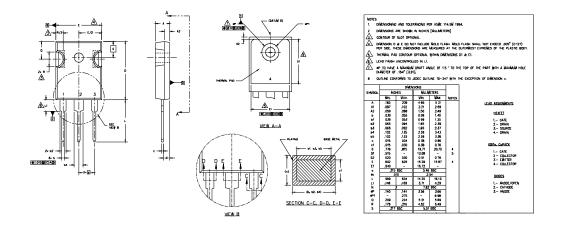
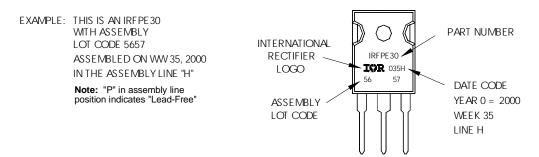



Fig 13b. Gate Charge Test Circuit

International

IRFP048NPbF


Peak Diode Recovery dv/dt Test Circuit



TO-247AC Package Outline

Dimensions are shown in millimeters (inches)

TO-247AC Part Marking Information

Data and specifications subject to change without notice.

International

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 06/04

www.irf.com

International

Note: For the most current drawings please refer to the IR website at: <u>http://www.irf.com/package/</u>

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.