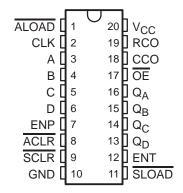
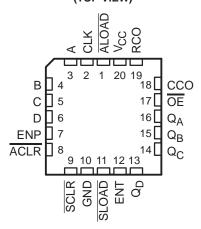
SDAS225A - DECEMBER 1982 - REVISED JANUARY 1995


- Carry Output for n-Bit Cascading
- Buffer-Type Outputs Drive Bus Lines Directly
- Choice of Asynchronous or Synchronous Clearing and Loading
- Internal Look-Ahead Circuitry for Fast Cascading
- Package Options Include Plastic Small-Outline (DW) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (N) and Ceramic (J) 300-mil DIPs

description

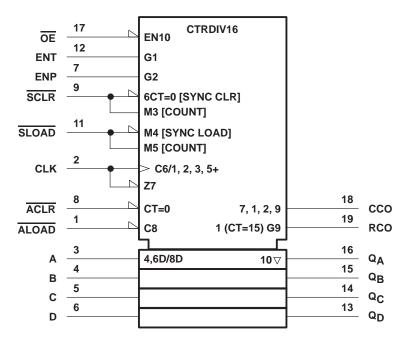

These binary counters are programmable and offer synchronous and asynchronous clearing as well as synchronous and asynchronous loading. All synchronous functions are executed on the positive-going edge of the clock.

The clear function is initiated by applying a low level to either asynchronous clear (ACLR) or synchronous clear (SCLR). ACLR (direct clear) overrides all other functions of the device, while SCLR overrides only the other synchronous functions. Data is loaded from the A, B, C, and D inputs by applying a low level to asynchronous load (ALOAD) or by the combination of a low level at synchronous load (SLOAD) and a positive-going clock transition. The counting function is enabled only when enable P (ENP), enable T (ENT), ACLR, ALOAD, SCLR, and SLOAD are all high.

SN54ALS561A... J PACKAGE SN74ALS561A... DW OR N PACKAGE (TOP VIEW)

SN54ALS561A . . . FK PACKAGE (TOP VIEW)

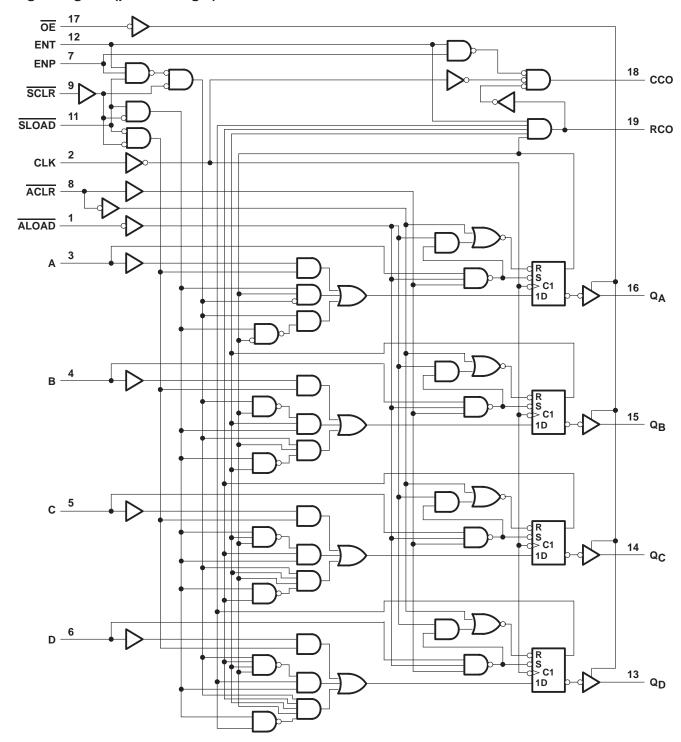
A high level at the output-enable (\overline{OE}) input forces the Q outputs into the high-impedance state, and a low level enables those outputs. Counting is independent of \overline{OE} . ENT is fed forward to enable the ripple-carry output (RCO) to produce a high-level pulse while the count is maximum (15). The clocked carry output (CCO) produces a high-level pulse for a duration equal to that of the low level of the clock when RCO is high and the counter is enabled (ENP and ENT are high); otherwise, CCO is low. CCO does not have the glitches commonly associated with a ripple-carry output. Cascading is normally accomplished by connecting RCO or CCO of the first counter to ENT of the next counter. However, for very high-speed counting, RCO should be used for cascading because CCO does not become active until the clock returns to the low level.


The SN54ALS561A is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74ALS561A is characterized for operation from 0°C to 70°C.

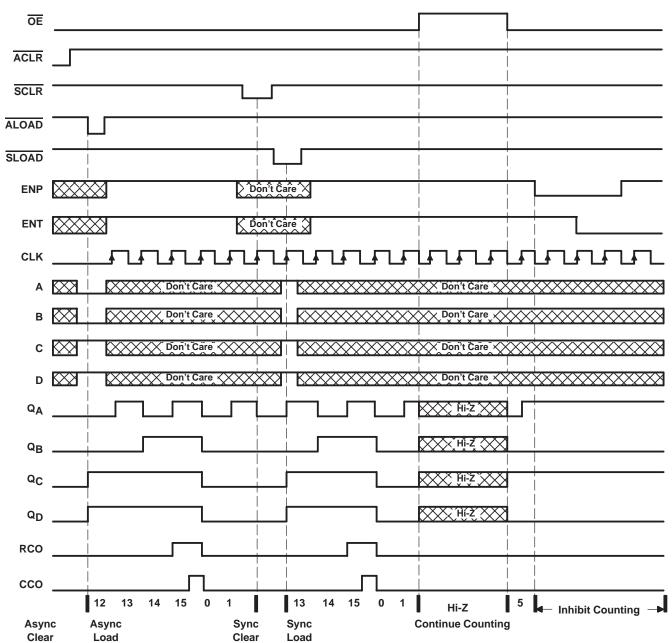
SDAS225A - DECEMBER 1982 - REVISED JANUARY 1995

FUNCTION TABLE

		ODEDATION						
ŌE	ACLR	ALOAD	SCLR	SLOAD	ENT	ENP	CLK	OPERATION
Н	Х	Х	Χ	Х	Χ	Χ	Χ	Q outputs disabled
L	L	X	X	X	Χ	Χ	X	Asynchronous clear
L	Н	L	X	X	Χ	Χ	X	Asynchronous load
L	Н	Н	L	X	Χ	Χ	\uparrow	Synchronous clear
L	Н	Н	Н	L	Χ	Χ	\uparrow	Synchronous load
L	Н	Н	Н	Н	Н	Н	\uparrow	Count
L	Н	Н	Н	Н	L	Χ	X	Inhibit counting
L	Н	Н	Н	Н	Χ	L	X	Inhibit counting


logic symbol†

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.



logic diagram (positive logic)

typical load, count, and inhibit sequences

SDAS225A - DECEMBER 1982 - REVISED JANUARY 1995

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC}	7 \
Input voltage, V _I	7 \
Operating free-air temperature range, T _A : SN54ALS561A	-55°C to 125°C
SN74ALS561A	0°C to 70°C
Storage temperature range	-65°C to 150°C

recommended operating conditions

				SN54ALS561A			SN7	UNIT		
				MIN	NOM	MAX	MIN	NOM	MAX	UNII
Vсс	Supply voltage			4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage			2			2			V
VIL	Low-level input voltage			0.7			0.8	V		
1	High level systems are accessed	Q outputs				-1			-2.6	A
ЮН	High-level output current	CCO and RCO	CCO and RCO						-0.4	mA
	Lauren autaut aumant	Q outputs				12			24	
lOL	Low-level output current	CCO and RCO			4			8	mA	
fclock	Clock frequency			0		20	0		30	MHz
		ACLR or ALOAD I	20			15			ns	
t _W	Pulse duration	CLK high	20			16.5				
		CLK low					16.5			
		END ENT	High	25			20			
		ENP, ENT	Low	25			20			
		Data at A, B, C, D		25			20			
	- · · · · · · · · · · · · · · · · · · ·		Low	21			15			
t _{su}	Setup time before CLK↑	SCLR	High (inactive)	35			30			ns
			Low	20			15			
		SLOAD	High (inactive)	35			30			
		ACLR or ALOAD i	12			10				
t _h	Hold time after CLK↑ for da	ata, ENP, ENT, SCLF	0			0			ns	
T _A	Operating free-air tempera	ture		-55		125	0	-	70	°C

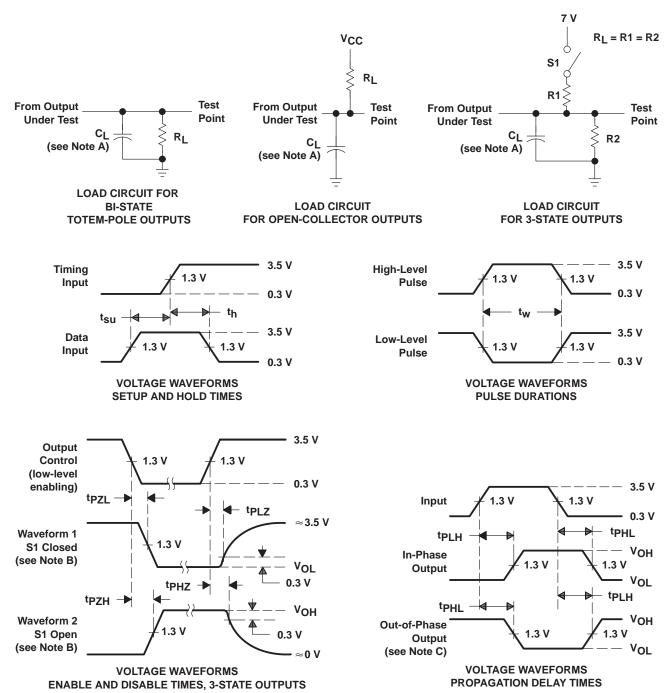
[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

SN54ALS561A, **SN74ALS561A SYNCHRONOUS 4-BIT COUNTERS WITH 3-STATE OUTPUTS**

SDAS225A - DECEMBER 1982 - REVISED JANUARY 1995

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		TEST COL	SN5	4ALS56	1A	SN7	UNIT				
	PARAMETER	lesi coi	TEST CONDITIONS				MIN	TYP [†]	MAX	UNIT	
٧ıK		V _{CC} = 4.5 V,	I _I = -18 mA			-1.5			-1.5	V	
	All outputs	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V},$	$I_{OH} = -0.4 \text{ mA}$	V _{CC} -2)		V _{CC} -2	2			
Vон	Q outputs	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$I_{OH} = -1 \text{ mA}$	2.4	3.3					V	
	Q outputs	V _{CC} = 4.5 V	$I_{OH} = -2.6 \text{ mA}$				2.4	3.2			
	Q outputs	V _{CC} = 4.5 V	I _{OL} = 12 mA		0.25	0.4		0.25	0.4	V	
\/a.	Q outputs	VCC = 4.5 V	I _{OL} = 24 mA					0.35	0.5		
VOL	CCO and RCO	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	I _{OL} = 4 mA		0.25	0.4		0.25	0.4		
		V _{CC} = 4.5 V	$I_{OL} = 8 \text{ mA}$					0.35	0.5		
lozh		V _{CC} = 5.5 V,	V _O = 2.7 V			20			20	μΑ	
lozL		V _{CC} = 5.5 V,	V _O = 0.4 V			-20			-20	μΑ	
1.	ENP and ENT	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\/. 7 \/			0.2			0.2	A	
11	Other inputs	V _{CC} = 5.5 V,	V _I = 7 V		0.1				0.1	mA	
Luci	ENP and ENT	V 55V	V. 07V			40			40	^	
lН	Other inputs	$V_{CC} = 5.5 \text{ V},$	V _I = 2.7 V			20			20	μΑ	
I _{IL}		$V_{CC} = 5.5 V,$	V _I = 0.4 V			-0.2			-0.2	mA	
. +	CCO and RCO	V 55V	V- 2.25 V	-15		-70	-15		-70	A	
1 _O ‡	Q	$V_{CC} = 5.5 \text{ V},$	$V_0 = 2.25 \text{ V}$	-20		-112	-30		-112	mA	
			Outputs high		17	27		17	27		
ICC		V _{CC} = 5.5 V	Outputs low		21	33		21	33	mA	
			Outputs disabled		22	36		22	36		


[†] All typical values are at V_{CC} = 5 V, T_A = 25°C. ‡ The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, I_{OS}.

switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	C _I R'	V_{CC} = 4.5 V to 5.5 V, C_L = 50 pF, R1 = 500 Ω , R2 = 500 Ω , T_A = MIN to MAX †					
			SN54AL	S561A	SN74AL				
			MIN	MAX	MIN	MAX			
f _{max}			20		30		MHz		
^t PLH	CLK	Any Q	4	15	4	12	ns		
^t PHL	OLK	Ally Q	5	21	5	18	113		
^t PLH	CLK	RCO	9	35	9	29	ns		
^t PHL	OLIX	Koo	8	29	8	24	113		
^t PLH	CLK	cco	8	35	8	26	ns		
^t PHL	OLK .	000	5	20	5	16			
^t PLH	ALOAD	Any Q	10	38	10	35	ns		
^t PHL	ALOAD	Arry Q	7	27	7	23	ns		
^t PLH	ALOAD	RCO	15	50	15	40	ne		
^t PHL	ALOAD	, KCO	12	35	12	30	ns		
^t PLH	ALOAD	ссо	25	65	25	55	ns		
^t PHL	ALOAD	000	12	42	12	33			
^t PLH	A D OD	Any Q	8	35	8	30	ns		
^t PHL	A, B, C, or D	Arry Q	7	27	7	22			
t _{PLH}	ENT	RCO	5	20	5	16	20		
^t PHL	ENT	RCO	4	18	4	14	ns		
^t PLH	ENT	ссо	12	35	12	32	20		
^t PHL	ENT	000	4	15	4	12	ns		
^t PLH	END	ссо	5	22	5	18	20		
^t PHL	ENP	000	4	14	4	12	ns		
^t PHL	ACLR	Any Q	7	28	7	22	ns		
^t PZH	=	A O	5	24	5	19	ns		
^t PZL	ŌĒ	Any Q	8	28	8	23			
[†] PHZ	ŌĒ	A O	2	12	2	10			
t _{PLZ}	1 OE	Any Q	2	20	4	15	ns		

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

PARAMETER MEASUREMENT INFORMATION SERIES 54ALS/74ALS AND 54AS/74AS DEVICES

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. When measuring propagation delay items of 3-state outputs, switch S1 is open.
- D. All input pulses have the following characteristics: PRR \leq 1 MHz, $t_f = t_f = 2$ ns, duty cycle = 50%.
- E. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

PACKAGE OPTION ADDENDUM

10-Dec-2020

PACKAGING INFORMATION

www.ti.com

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN74ALS561AN	ACTIVE	PDIP	N	20	20	RoHS & Non-Green	NIPDAU	N / A for Pkg Type	0 to 70	SN74ALS561AN	Samples
SN74ALS561ANE4	ACTIVE	PDIP	N	20	20	RoHS & Non-Green	NIPDAU	N / A for Pkg Type	0 to 70	SN74ALS561AN	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

10-Dec-2020

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such Tl products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for Tl products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated