STL140N4LLF5

N-channel 40 V, 2.2 mΩ typ., 32 A STripFET[™] F5 Power MOSFET in a PowerFLAT[™] 5x6 package

Datasheet - production data

Figure 1: Internal schematic diagram

Features

Order code	VDS	R _{DS(on)} max.	ID
STL140N4LLF5	40 V	2.75 mΩ	32 A

- Low on-resistance R_{DS(on)}
- High avalanche ruggedness
- Low gate drive power loss

Applications

Switching applications

Description

This N-channel Power MOSFET is developed using the STripFET™ F5 technology and has been optimized to achieve very low on-state resistance, contributing to a FoM that is among the best in its class.

Table 1: Device summary

	······································				
Order code	Marking	Package	Packing		
STL140N4LLF5	140N4LF5	PowerFLAT™ 5x6	Tape and reel		

DocID17586 Rev 4

This is information on a product in full production.

Contents

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	PowerFLAT™ 5x6 type C package information	9
	4.2	PowerFLAT™ 5x6 packing information	11
5	Revisio	n history	13

57

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	40	V
V _{GS}	Gate-source voltage	±22	V
I _D ⁽¹⁾	Drain current (continuous) at Tc = 25 °C	140	А
اD ⁽¹⁾	Drain current (continuous) at T _c = 100 °C	88	А
اD ⁽²⁾	Drain current (continuous) at T _{pcb} = 25 °C	32	А
ID ⁽²⁾	Drain current (continuous) at T _{pcb} = 100 °C	20	А
I _{DM} ⁽³⁾	Drain current (pulsed)	128	А
Ртот ⁽¹⁾	Total dissipation at $T_c = 25 \ ^{\circ}C$	80	W
Ртот ⁽²⁾	Total dissipation at $T_{pcb} = 25 \text{ °C}$	4	W
T _{stg}	Storage temperature range	-55 to 150	°C
Tj	Operating junction temperature range	-55 10 150	U

Notes:

 $^{(1)}\mbox{This}$ value is rated according to $R_{\mbox{thj-case}}.$

 $^{(2)}\mbox{This}$ value is rated according to $R_{\mbox{thj-pcb.}}$

⁽³⁾Pulse width limited by safe operating area.

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj} -case	Thermal resistance junction-case	1.56	°C/W
Rthj-pcb ⁽¹⁾	Thermal resistance junction-pcb	31.3	°C/W

Notes:

⁽¹⁾When mounted on FR-4 board of 1 inch², 2 oz Cu t <10 sec

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
lav	Not-repetitive avalanche current, (pulse width limited by T _{jmax})	16	А
Eas	Single pulse avalanche energy (starting $T_J = 25 \text{ °C}$, $I_D = I_{AV}$, $V_{DD} = 24 \text{ V}$)	300	mJ

2 Electrical characteristics

 $T_C = 25$ °C unless otherwise specified

Table 5: On/off-state						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS}=0~V,~I_D=250~\mu A$	40			V
	I _{DSS} Zero gate voltage drain current	$V_{GS} = 0 V, V_{DS} = 40 V$			1	μΑ
IDSS		$V_{GS} = 0 V, V_{DS} = 40 V,$ T _c = 125 °C ⁽¹⁾			10	μA
Igss	Gate body leakage current	$V_{DS} = 0 V$, $V_{GS} = \pm 22 V$			±100	μA
VGS(th)	Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$	1			V
D	Static drain-source	V_{GS} = 10 V, I _D = 16 A		2.2	2.75	mΩ
R _{DS(on)}	on-resistance	$V_{GS} = 4.5 \text{ V}, I_D = 16 \text{ A}$		2.4	3.1	mΩ

Notes:

 $\ensuremath{^{(1)}}\ensuremath{\mathsf{Defined}}$ by design, not subject to production test.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	5900	-	pF
Coss	Output capacitance	V _{DS} = 25 V, f = 1 MHz,	-	870	-	pF
Crss	Reverse transfer capacitance	V _{GS} = 0 V	-	130	-	рF
Qg	Total gate charge	V _{DD} = 15 V, I _D = 32 A	-	45	-	nC
Q _{gs}	Gate-source charge	V _{GS} = 0 to 4.5 V,	-	14	-	nC
Q _{gd}	Gate-drain charge	see (Figure 14: "Test circuit for gate charge behavior")	-	17	-	nC
R_G	Gate input resistance	f=1 MHz, gate DC bias = 0 V, test signal level = 20 mV, $I_D = 0 A$	-	1.2	-	Ω

Table 6: Dynamic

Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V_{DD} = 15 V, I_D = 16 A,	-	19	-	ns
tr	Rise time	$R_G = 4.7 \Omega$	-	29	-	ns
t _{d(off)}	Turn-off delay time	V _{GS} = 10 V, (see <i>Figure 13: "Test circuit for</i>	-	90	-	ns
tr	Fall time	resistive load switching times" and Figure 18: "Switching time waveform")	-	21	-	ns

Electrical characteristics

Table 8: Source-drain diode						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Isd	Forward on voltage		-		32	А
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		128	А
Vsd ⁽²⁾	Forward on voltage	I _{SD} = 32 A, V _{GS} =0 V	-		1.1	V
trr	Reverse recovery time I _{SD} = 32 A, di/dt = 100 A/µs,		-	44		ns
Qrr	Reverse recovery charge	V _{DD} = 25 V (see Figure 15: "Test circuit for	-	57		nC
Irrm	Reverse recovery current	inductive load switching and diode recovery times")	-	2.6		А

Notes:

⁽¹⁾Pulse width limited by safe operating area.

 $^{(2)}\mbox{Pulsed:}$ pulse duration=300 $\mbox{\mu s},$ duty cycle 1.5%.

STL140N4LLF5

57

Electrical characteristics

DocID17586 Rev 4

3 Test circuits

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

4.1 PowerFLAT[™] 5x6 type C package information

Figure 19: PowerFLAT™ 5x6 type C package outline

Package information

10/14

STL140N4LLF5

Tab	le 9: PowerFLAT™ 5x6 ty	vpe C package mechanica	al data
Dim.		mm	
Dini.	Min.	Тур.	Max.
А	0.80		1.00
A1	0.02		0.05
A2		0.25	
b	0.30		0.50
С	5.80	6.00	6.20
D	5.00	5.20	5.40
D2	4.15		4.45
D3	4.05	4.20	4.35
D4	4.80	5.00	5.20
D5	0.25	0.40	0.55
D6	0.15	0.30	0.45
е		1.27	
E	5.95	6.15	6.35
E2	3.50		3.70
E3	2.35		2.55
E4	0.40		0.60
E5	0.08		0.28
E6	0.20	0.325	0.45
E7	0.75	0.90	1.05
К	1.05		1.35
L	0.725		1.025
L1	0.05	0.15	0.25
θ	0°		12°

4.2 PowerFLAT[™] 5x6 packing information

Figure 22: PowerFLAT™ 5x6 package orientation in carrier tape

Package information

STL140N4LLF5

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
03-Jun-2010	1	First release.
29-Apr-2011	2	Document status promoted from preliminary data to datasheet.
10-Nov-2011	3	Section 4: Package mechanical data has been updated. Minor text changes.
08-Aug-2017	4	Modified <i>Table 1: "Device summary".</i> Updated <i>Section 5: "Package information".</i> Minor text changes.

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

