STF30N10F7

N-channel 100 V, 0.02 Ω typ., 24 A STripFET™ F7 Power MOSFET in a TO-220FP package

Datasheet - production data

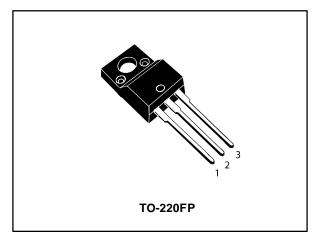
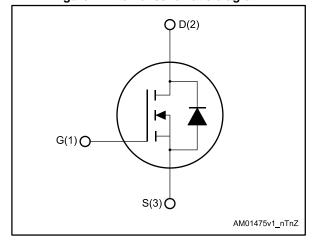



Figure 1: Internal schematic diagram

Features

- Among the lowest R_{DS(on)} on the market
- Excellent FoM (figure of merit)
- Low C_{rss}/C_{iss} ratio for EMI immunity
- High avalanche ruggedness

Applications

Switching applications

Description

This N-channel Power MOSFET utilizes STripFET™ F7 technology with an enhanced trench gate structure that results in very low onstate resistance, while also reducing internal capacitance and gate charge for faster and more efficient switching.

Table 1: Device summary

Order code	Marking	Package	Packing
STF30N10F7	30N10F7	TO-220FP	Tube

Contents STF30N10F7

Contents

1	Electric	al ratings	3
2	Electric	cal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	TO-220FP type A package information	10
5	Revisio	n history	12

STF30N10F7 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	100	V
V_{GS}	Gate source voltage	20	V
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	24	Α
I _D ⁽¹⁾	Drain current (continuous) at T _C = 100 °C	16	Α
I _{DM} ⁽¹⁾⁽²⁾	Drain current (pulsed)	96	Α
Ртот	Total dissipation at T _C = 25 °C	25	
V _{ISO}	Insulation with stand voltage (RMS) from all three leads to external heat sink (t=1 s; T_C =25 °C)		V
TJ	Operating junction temperature range -55 to 175		°C
T _{stg}	Storage temperature range	-55 to 175	°C

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	6	°C/W
R _{thj-amb}	Thermal resistance junction-ambient	62.5	°C/W

⁽¹⁾Current is limited by package.

 $[\]ensuremath{^{(2)}}\mbox{Pulse}$ width limited by safe operating area.

Electrical characteristics STF30N10F7

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Table 4: On /off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$	100			٧
	- · ·	V _{GS} = 0 V , V _{DS} =100 V			1	μΑ
IDSS	Zero gate voltage drain current	V _{GS} = 0 V, V _{DS} =100 V, T _C = 125 °C ⁽¹⁾			100	μΑ
I _{GSS}	Gate-body leakage current	V _{DS} = 0 V, V _{GS} = +20 V			100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	2.5		4.5	٧
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 16 A		0.02	0.024	Ω

Notes:

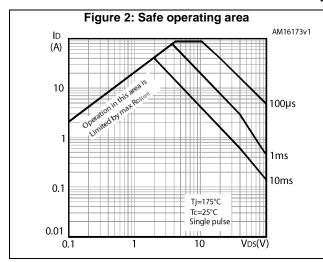
Table 5: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	1270	ı	pF
Coss	Output capacitance	V _{DS} = 50 V, f = 1 MHz,V _{GS} = 0 V		290	•	pF
Crss	Reverse transfer capacitance			24	-	pF
Qg	Total gate charge	$V_{DD} = 50 \text{ V}, I_D = 32 \text{ A},$	-	19	-	nC
Qgs	Gate-source charge	V _{GS} = 10 V	-	9	-	nC
Q_{gd}	Gate-drain charge	(see Figure 14: "Test circuit for gate charge behavior")	-	4.5	•	nC

Table 6: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V _{DD} = 50 V, I _D = 16 A,	ı	12	1	ns
tr	Rise time	$R_{G} = 4.7 \Omega, V_{GS} = 10 V$		17.5	-	ns
t _{d(off)}	Turn-off delay time	(see Figure 13: "Test circuit for resistive load switching times")	-	22	-	ns
t _f	Fall time		-	5.6	-	ns

⁽¹⁾Defined by design, not subject to production test


Table 7: Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{SD} ⁽¹⁾	Forward on voltage	I _{SD} = 24 A, V _{GS} = 0	-		1.1	V
Irr	Reverse recovery time	I _{SD} = 24 A, di/dt = 100 A/μs	ı	41		ns
Qrr	Reverse recovery charge	V _{DD} = 80 V, T _J = 150 °C, (see Figure 15: "Test circuit for inductive load"	-	47		nC
I _{RRM}	Reverse recovery current	switching and diode recovery times")	-	2.3		Α

Notes:

 $^{^{(1)}\}text{Pulsed:}$ pulse duration = 300 $\mu\text{s,}$ duty cycle 1.5%.

2.1 Electrical characteristics (curves)

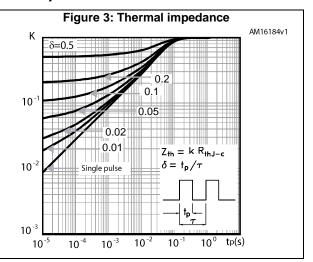


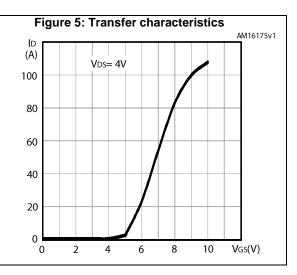
Figure 4: Output characteristics

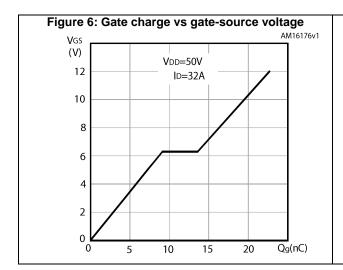
ID(A)

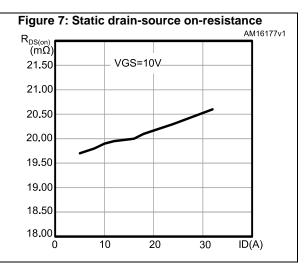
VGS=10V

9V

80


60


7V


40

20

0 2 4 6 8 VDS(V)

STF30N10F7 Electrical characteristics

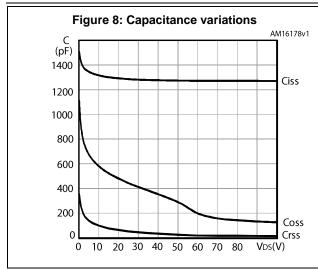


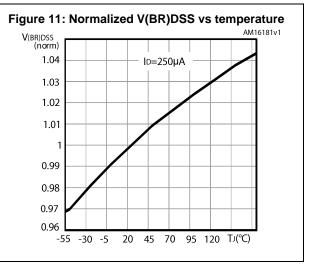
Figure 9: Normalized gate threshold voltage vs temperature

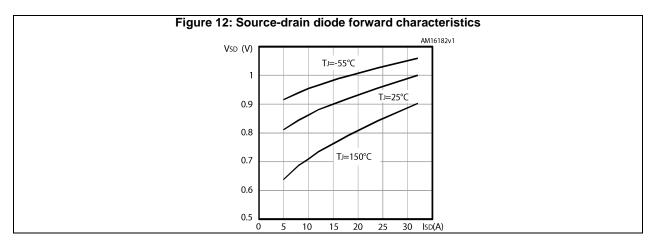
VGS(th) (norm)

1.2

1

0.8

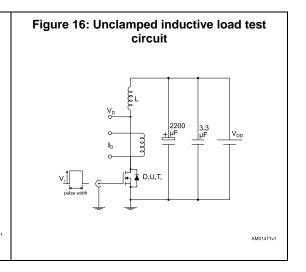

0.6

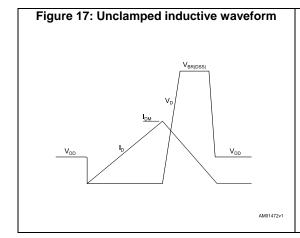

0.4

0.2

0

-55 -30 -5 20 45 70 95 120 145 ΤJ(°C)




Test circuits STF30N10F7

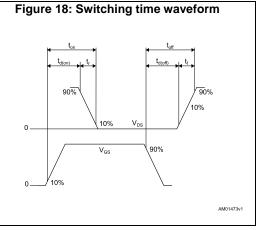

3 Test circuits

Figure 13: Test circuit for resistive load switching times

Figure 15: Test circuit for inductive load switching and diode recovery times

STF30N10F7 Package information

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 TO-220FP type A package information

Figure 19: TO-220FP package outline

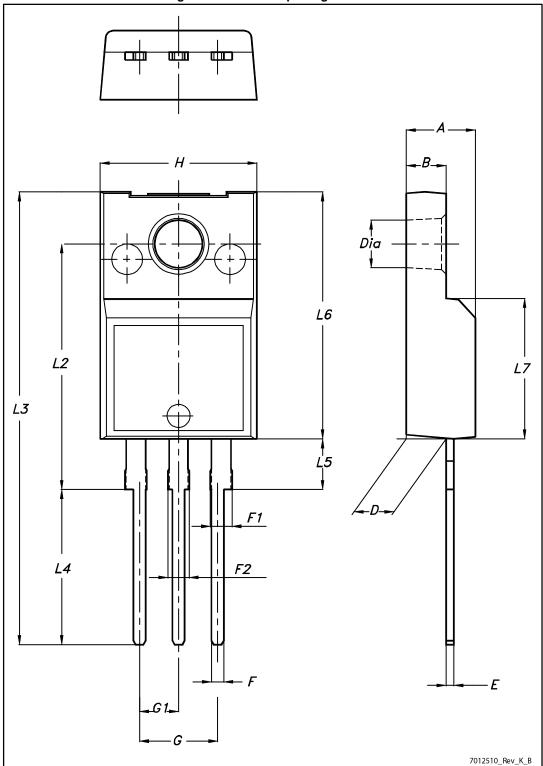


Table 8: TO-220FP package mechanical data

D!	mm				
Dim.	Min.	Тур.	Max.		
A	4.4		4.6		
В	2.5		2.7		
D	2.5		2.75		
Е	0.45		0.7		
F	0.75		1		
F1	1.15		1.70		
F2	1.15		1.70		
G	4.95		5.2		
G1	2.4		2.7		
Н	10		10.4		
L2		16			
L3	28.6		30.6		
L4	9.8		10.6		
L5	2.9		3.6		
L6	15.9		16.4		
L7	9		9.3		
Dia	3		3.2		

Revision history STF30N10F7

5 Revision history

Table 9: Document revision history

Date	Revision	Changes
15-Sep-2016	1	First release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved