

🕳 Order

Now

ZHCSEJ6F-OCTOBER 2015-REVISED AUGUST 2019

BQ27426 系统侧 Impedance Track™ 电量监测计

Technical

Documents

1 特性

- 单节锂离子电池电量监测计
 - 驻留在系统主板上
 - 支持嵌入式或可拆除电池
 - 由具有集成 LDO 的电池直接供电
 - 支持低值外部感应电阻器 (10mΩ)
- 超低功耗:正常模式下为 50μA,睡眠模式下为 9μA
- 基于已获专利的 Impedance Track™技术进行电池 电量监测
 - 为 4.2V、4.35V 和 4.4V 电池提供三种可选的预 编程配置文件
 - 借助平滑滤波器报告剩余电量和充电状态 (SOC)
 - 针对电池老化、自放电、温度和速率变化自动调
 节
 - 估计电池健康状况(老化)
- 微控制器外设接口支持:
 - 400kHz I²C 串行接口
 - 可配置 SOC 中断或 电池低电量数字输出警告
 - 内部温度传感器或主机报告的温度或外部热敏电阻

2 应用

- 智能手机、功能型手机和平板电脑
- 可穿戴产品
- 楼宇自动化
- 便携式医疗/工业手持终端
- 便携式音频设备
- 游戏机

3 说明

🧷 Tools 8

Software

德州仪器 (TI) BQ27426 电池电量监测计是一款单节电 池电量监测计,只需进行少量的用户配置和系统微控制 器固件开发工作即可快速启动系统。

Support &

Community

22

通过预编程三种化学配置文件,最大限度减少用户配置,并帮助客户管理项目中不同电池化学成分的库存。 BQ27426 电池电量监测计在休眠模式下具有超低功 耗,有助于延长电池运行时间。可配置中断有助于节省 系统功耗,释放主机使其停止继续轮询。外部热敏电阻 为精确温度感测提供支持。

BQ27426 电池电量监测计使用已获专利的 Impedance Track™ 算法来进行电量监测,并提供诸如剩余电量 (mAh)、充电状态 (%) 和电池电压 (mV) 等信息。

使用 BQ27426 电量监测计进行电池电量监测时,只需 连接至可拆卸电池组或嵌入式电池电路的 PACK+ (P+) 和 PACK- (P-)。该器件采用微型 9 球、1.62mm × 1.58mm、0.5mm 间距的 NanoFree™芯片级封装 (DSBGA),是空间受限类应用的 理想选择。

器件信息

器件型号	封装	封装尺寸(标称值)			
BQ27426	YZF (9) ⁽¹⁾	1.62mm x 1.58mm			

(1) 要了解所有可用封装,请参见数据表末尾的可订购产品附录。

简化原理图

目录

1	特性	E 1
2	应用	1
3	说明]
4	修订	「历史记录
5	Pin	Configuration and Functions 3
6		cifications 4
	6.1	Absolute Maximum Ratings 4
	6.2	ESD Ratings 4
	6.3	Recommended Operating Conditions 5
	6.4	Thermal Information 5
	6.5	Supply Current 5
	6.6	Digital Input and Output DC Characteristics 5
	6.7	LDO Regulator, Wake-up, and Auto-Shutdown DC Characteristics
	6.8	LDO Regulator, Wake-up, and Auto-Shutdown AC Characteristics
	6.9	ADC (Temperature and Cell Measurement) Characteristics
	6.10) Integrating ADC (Coulomb Counter) Characteristics
	6.11	I ² C-Compatible Interface Communication Timing Characteristics
	6.12	2 SHUTDOWN and WAKE-UP Timing 8

	6.13	Typical Characteristics	8
7	Deta	iled Description	9
	7.1	Overview	9
	7.2	Functional Block Diagram	9
	7.3	Feature Description	9
	7.4	Device Functional Modes	11
8	App	lication and Implementation	12
	8.1	Application Information	12
	8.2	Typical Applications	12
9	Pow	er Supply Recommendation	16
	9.1	Power Supply Decoupling	16
10	Laye	out	16
	10.1	Layout Guidelines	16
	10.2	Layout Example	17
11	器件	和文档支持	18
	11.1	文档支持	18
	11.2	社区资源	18
	11.3	商标	18
	11.4	静电放电警告	18
	11.5	Glossary	18
12	机械	、封装和可订购信息	18

4 修订历史记录

2

Changes from Revision E (May 2019) to Revision F	Page
Added ^P C Time Out	10
Changed Figure 11	
Changes from Revision D (May 2016) to Revision E	Page
Added the reference to low-side current sensing	
Added the low-side current sense resistor	
Added Figure 11	
Changes from Revision C (February 2016) to Revision D	Page
Changed Application and Implementation	12
Changed Design Requirements	
Changes from Revision B (February 2016) to Revision C	Page
- • 己更改 简化原理图	
Changed the Functional Block Diagram	

www.ti.com.cn

5 Pin Configuration and Functions

Bottom View

Pin Functions

PIN			DESCRIPTION		
NAME	NUMBER	ITPE	DESCRIPTION		
BAT	C3	PI, AI	LDO regulator input and battery voltage measurement input. Kelvin sense connect to positive battery terminal (PACKP). Connect a capacitor (1 μ F) between BAT and V _{SS} . Place the capacitor close to the gauge.		
BIN	B1	DI	Battery insertion detection input. If OpConfig [BI_PU_EN] = 1 (default), a logic low on the pin is detected as battery insertion. For a removable pack, the BIN pin can be connected to V_{SS} through a pulldown resistor on the pack, typically the 10-k Ω thermistor; the system board should use a 1.8-M Ω pullup resistor to V_{DD} to ensure the BIN pin is high when a battery is removed. If the battery is embedded in the system, it is recommended to leave [BI_PU_EN] = 1 and use a 10-k Ω pulldown resistor from BIN to V_{SS} . If [BI_PU_EN] = 0, then the host must inform the gauge of battery insertion and removal with the <i>BAT_INSERT</i> and <i>BAT_REMOVE</i> subcommands. A 10-k Ω pulldown resistor should be placed between BIN and V_{SS} , even if this pin is unused. NOTE: The BIN pin must not be shorted directly to V_{CC} or V_{SS} and any pullup resistor on the BIN pin must be connected only to V_{DD} and not an external voltage rail. If an external thermistor is used for temperature input, the thermistor should be connected between this pin and V_{SS} .		

(1) IO = Digital input-output, AI = Analog input, P = Power connection

Pin Functions (continued)

PIN			DESCRIPTION		
NAME	NUMBER		DESCRIPTION		
GPOUT	A1	DO	This open-drain output can be configured to indicate BAT_LOW when the OpConfig [BATLOWEN] bit is set. By default [BATLOWEN] is cleared and this pin performs an interrupt function (SOC_INT) by pulsing for specific events, such as a change in state-of-charge. Signal polarity for these functions is controlled by the [GPIOPOL] configuration bit. This pin should not be left floating, even if unused; therefore, a $10 \cdot k\Omega$ pullup resistor is recommended. If the device is in SHUTDOWN mode, toggling GPOUT will make the gauge exit SHUTDOWN. It is recommended to connect GPOUT to a GPIO of the host MCU so that in case of any inadvertent shutdown condition, the gauge can be commanded to come out of SHUTDOWN.		
SCL	A3	DIO	Slave I ² C serial bus for communication with system (Master). Open-drain pins. Use with external		
SDA A2		DIO	10-k Ω pullup resistors (typical) for each pin. If the external pullup resistors will be disconnected from these pins during normal operation, recommend using external 1-M Ω pulldown resistors to V _{SS} at each pin to avoid floating inputs.		
SRN	C2	AI	Coulomb counter differential inputs expecting an external 10 m Ω , 1% sense resistor in the high-		
SRP	C1	AI	side current path. Kelvin sense connect SRP to the positive battery terminal (PACKP) side of the external sense resistor. Kelvin sense connect SRN to the other side of the external sense resistor, the positive connection to the system (VSYS). No calibration is required. The fuel gauge is precalibrated for a standard 10 m Ω , 1% sense resistor. Low-side current sensing can be enabled. For more information, see <i>Typical Applications</i> .		
V _{DD}	B3	PO	1.8-V regulator output. Decouple with 2.2- μ F ceramic capacitor to V _{SS} . This pin is not intended provide power for other devices in the system.		
V _{SS}	B2	PI	Ground pin		

Specifications 6

6.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
V _{BAT}	BAT pin input voltage range	-0.3	6	V
V	SRP and SRN pins input voltage range	-0.3	V _{BAT} + 0.3	V
V _{SR}	Differential voltage across SRP and SRN. ABS(SRP – SRN)		2	V
V _{DD}	V _{DD} pin supply voltage range (LDO output)	-0.3	2	V
V _{IOD}	Open-drain IO pins (SDA, SCL)	-0.3	6	V
V _{IOPP}	Push-pull IO pins (BIN)	-0.3	V _{DD} + 0.3	V
T _A	Operating free-air temperature range	-40	85	°C
Storage t	emperature, T _{stg}	-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
V	Electrostatic	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±1500	V
V _(ESD)	discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±250	V

JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. (1)

(2)

6.3 Recommended Operating Conditions

$T_A = 30^{\circ}C$ and $V_{REGIN} =$	$V_{BAT} = 3.6 V$	(unless otherwise	noted)
---------------------------------------	-------------------	-------------------	--------

			MIN	NOM	MAX	UNIT
$C_{BAT}^{(1)}$	External input capacitor for internal LDO between BAT and V_{SS}	Nominal capacitor values specified. Recommend		0.1		μF
C _{LDO18} ⁽¹⁾	External output capacitor for internal LDO between V_{DD} and V_{SS}	a 5% ceramic X5R-type capacitor located close to the device.		2.2		μF
$V_{PU}^{(1)}$	External pullup voltage for open- drain pins (SDA, SCL, GPOUT)		1.62		3.6	V

(1) Specified by design. Not production tested.

6.4 Thermal Information

		BQ27426	
	THERMAL METRIC ⁽¹⁾	YZF (DSBGA)	UNIT
		9 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	64.1	°C/W
$R_{\theta JCtop}$	Junction-to-case (top) thermal resistance	59.8	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	52.7	°C/W
ΨJT	Junction-to-top characterization parameter	0.3	°C/W
Ψјв	Junction-to-board characterization parameter	28.3	°C/W
$R_{\theta JCbot}$	Junction-to-case (bottom) thermal resistance	2.4	°C/W

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Supply Current

 $T_{\text{A}}=30^{\circ}\text{C}$ and $V_{\text{REGIN}}=V_{\text{BAT}}=3.6$ V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP I	MAX	UNIT
$I_{CC}^{(1)}$	NORMAL mode current	I _{LOAD} > Sleep Current ⁽²⁾		50		μA
$I_{SLP}^{(1)}$	SLEEP mode current	I _{LOAD} < Sleep Current ⁽²⁾		9		μA
I _{SD} ⁽¹⁾	SHUTDOWN mode current	Fuel gauge in host commanded SHUTDOWN mode. (LDO regulator output disabled)		0.6		μΑ

(1) Specified by design. Not production tested.

(2) Wake Comparator Disabled.

6.6 Digital Input and Output DC Characteristics

 $T_A = -40^{\circ}$ C to 85°C, typical values at $T_A = 30^{\circ}$ C and $V_{REGIN} = 3.6$ V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{IH(OD)}	Input voltage, high ⁽²⁾	External pullup resistor to V_{PU}	V _{PU} × 0.7			V
V _{IH(PP)}	Input voltage, high ⁽³⁾		1.4			V
V _{IL}	Input voltage, low ^{(2) (3)}				0.6	V
V _{OL}	Output voltage, low ⁽²⁾				0.6	V
I _{OH}	Output source current, high ⁽²⁾				0.5	mA
I _{OL(OD)}	Output sink current, low ⁽²⁾				-3	mA
$C_{IN}^{(1)}$	Input capacitance ⁽²⁾⁽³⁾				5	pF
l _{lkg}	Input Leakage Current (SCL, SDA, BIN, GPOUT)				1	μA

(1) Specified by design. Not production tested.

(2) Open Drain pins: (SCL, SDA, GPOUT)

(3) Push-Pull pin: (BIN)

RUMENTS

6.7 LDO Regulator, Wake-up, and Auto-Shutdown DC Characteristics

 $T_A = -40^{\circ}$ C to 85°C, typical values at $T_A = 30^{\circ}$ C and $V_{REGIN} = 3.6$ V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{BAT}	BAT pin regulator input		2.45		4.5	V
V _{DD}	Regulator output voltage			1.85		V
UVLO _{IT+}	V _{BAT} undervoltage lock-out LDO wake-up rising threshold			2		V
UVLO _{IT-}	V _{BAT} undervoltage lock-out LDO auto-shutdown falling threshold			1.95		V
V _{WU+} ⁽¹⁾	GPOUT (input) LDO Wake-up rising edge threshold ⁽²⁾	LDO Wake-up from SHUTDOWN mode	1.2			V

(1) Specified by design. Not production tested.

(2) If the device is commanded to SHUTDOWN via I²C with V_{BAT} > UVLO_{IT+}, a wake-up rising edge trigger is required on GPOUT.

6.8 LDO Regulator, Wake-up, and Auto-Shutdown AC Characteristics

	the second secon		
$1 = -40^{-1}$, to 85^{-1} .	typical values at $1 \times = 3$	$U^{-}U^{-}U^{-}U^{-}U^{-}U^{-}U^{-}U^{-}$	l'uniess otherwise notem
$I_A = 10000000$, typical values at $I_A = 0$	\mathbf{O} \mathbf{O} and $\mathbf{V}_{\text{REGIN}} = \mathbf{O} \cdot \mathbf{O} \cdot \mathbf{V}$	(unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{SHDN} ⁽¹⁾	SHUTDOWN entry time	Time delay from SHUTDOWN command to LDO output disable.			250	ms
t _{SHUP} ⁽¹⁾	SHUTDOWN GPOUT low time	Minimum low time of GPOUT (input) in SHUTDOWN before WAKEUP	10			μs
t _{VDD} ⁽¹⁾	Initial V _{DD} output delay			13		ms
t _{WUVDD} ⁽¹⁾	Wake-up V_{DD} output delay	Time delay from rising edge of GPOUT (input) to nominal V_{DD} output		8		ms
t _{PUCD}	Power-up communication delay	Time delay from rising edge of REGIN to the Active state. Includes firmware initialization time		250		ms

(1) Specified by design. Not production tested.

6.9 ADC (Temperature and Cell Measurement) Characteristics

 $T_A = -40^{\circ}$ C to 85°C; typical values at $T_A = 30^{\circ}$ C and $V_{REGIN} = 3.6$ V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{IN(BAT)}	BAT pin voltage measurement range	Voltage divider enabled	2.45		4.5	V
t _{ADC_CONV}	Conversion time			125		ms
	Effective resolution			15		bits

(1) Specified by design. Not tested in production.

6.10 Integrating ADC (Coulomb Counter) Characteristics

 $T_A = -40^{\circ}$ C to 85°C; typical values at $T_A = 30^{\circ}$ C and $V_{REGIN} = 3.6$ V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{SR}	Input voltage range from BAT to SRP/SRN pins		E	3AT ± 25		mV
t _{SR_CONV}	Conversion time	Single conversion		1		S
	Effective Resolution	Single conversion		16		bits

(1) Specified by design. Not tested in production.

XAS STRUMENTS

BQ27426

www.ti.com.cn

6.11 I²C-Compatible Interface Communication Timing Characteristics

 T_{A} = -40°C to 85°C; typical values at T_{A} = 30°C and V_{REGIN} = 3.6 V (unless otherwise noted)

			MIN	NOM	MAX	UNIT
Standard	Mode (100 kHz)					
t _{d(STA)}	Start to first falling edge of SCL		4			μs
t _{w(L)}	SCL pulse duration (low)		4.7			μs
t _{w(H)}	SCL pulse duration (high)		4			μs
t _{su(STA)}	Setup for repeated start		4.7			μs
t _{su(DAT)}	Data setup time	Host drives SDA	250			ns
t _{h(DAT)}	Data hold time	Host drives SDA	0			ns
t _{su(STOP)}	Setup time for stop		4			μs
t _(BUF)	Bus free time between stop and start	Includes Command Waiting Time	66			μs
t _f	SCL or SDA fall time ⁽¹⁾				300	ns
t _r	SCL or SDA rise time ⁽¹⁾				300	ns
f _{SCL}	Clock frequency ⁽²⁾				100	kHz
Fast Mode	e (400 kHz)					
t _{d(STA)}	Start to first falling edge of SCL		600			ns
t _{w(L)}	SCL pulse duration (low)		1300			ns
t _{w(H)}	SCL pulse duration (high)		600			ns
t _{su(STA)}	Setup for repeated start		600			ns
t _{su(DAT)}	Data setup time	Host drives SDA	100			ns
t _{h(DAT)}	Data hold time	Host drives SDA	0			ns
t _{su(STOP)}	Setup time for stop		600			ns
t _(BUF)	Bus free time between stop and start	Includes Command Waiting Time	66			μs
t _f	SCL or SDA fall time ⁽¹⁾				300	ns
t _r	SCL or SDA rise time ⁽¹⁾				300	ns
f _{SCL}	Clock frequency ⁽²⁾				400	kHz

(1)

Specified by design. Not production tested. If the clock frequency (f_{SCL}) is > 100 kHz, use 1-byte write commands for proper operation. All other transactions types are supported at 400 kHz. (See $\frac{PC}{C}$ Interface and $\frac{PC}{C}$ Command Waiting Time.) (2)

Figure 1. I²C-Compatible Interface Timing Diagrams

6.12 SHUTDOWN and WAKE-UP Timing

* GPOUT is configured as an input for wake-up signaling.

6.13 Typical Characteristics

7 Detailed Description

7.1 Overview

The BQ27426 fuel gauge accurately predicts the battery capacity and other operational characteristics of a single Li-based rechargeable cell. It can be interrogated by a system processor to provide cell information, such as state-of-charge (SOC).

NOTE The following formatting conventions are used in this document:

Commands: italics with parentheses() and no breaking spaces, for example, Control().

Data flash: italics, bold, and breaking spaces, for example, Design Capacity.

Register bits and flags: italics with brackets [], for example, [TDA]

Data flash bits: italics, bold, and brackets [], for example, [LED1]

Modes and states: ALL CAPITALS, for example, UNSEALED mode

7.2 Functional Block Diagram

7.3 Feature Description

Information is accessed through a series of commands, called *Standard Commands*. Further capabilities are provided by the additional *Extended Commands* set. Both sets of commands, indicated by the general format *Command*), are used to read and write information contained within the control and status registers, as well as its data locations. Commands are sent from system to gauge using the I²C serial communications engine, and can be executed during application development, system manufacture, or end-equipment operation.

The key to the high-accuracy gas gauging prediction is Texas Instruments proprietary Impedance Track[™] algorithm. This algorithm uses cell measurements, characteristics, and properties to create state-of-charge predictions that can achieve high accuracy across a wide variety of operating conditions and over the lifetime of the battery.

The fuel gauge measures the charging and discharging of the battery by monitoring the voltage across a smallvalue sense resistor. When a cell is attached to the fuel gauge, cell impedance is computed based on cell current, cell open-circuit voltage (OCV), and cell voltage under loading conditions.

The fuel gauge uses an integrated temperature sensor for estimating cell temperature. Alternatively, the host processor can provide temperature data for the fuel gauge.

For more details, see the BQ27426 Technical Reference Manual (SLUUBB0).

BQ27426

ZHCSEJ6F-OCTOBER 2015-REVISED AUGUST 2019

TEXAS INSTRUMENTS

www.ti.com.cn

Feature Description (continued)

7.3.1 Communications

7.3.1.1 $m \ell^2 C$ Interface

The fuel gauge supports the standard I²C read, incremental read, quick read, one-byte write, and incremental write functions. The 7-bit device address (ADDR) is the most significant 7 bits of the hex address and is fixed as 1010101. The first 8 bits of the I²C protocol are, therefore, 0xAA or 0xAB for write or read, respectively.

(S = Start, Sr = Repeated Start, A = Acknowledge, N = No Acknowledge, and P = Stop).

Figure 6. I²C Interface

The quick read returns data at the address indicated by the address pointer. The address pointer, a register internal to the I^2C communication engine, increments whenever data is acknowledged by the fuel gauge or the I^2C master. "Quick writes" function in the same manner and are a convenient means of sending multiple bytes to consecutive command locations (such as two-byte commands that require two bytes of data).

The following command sequences are not supported:

	K · · · · · · · · · · ·	1		· · · · · · · · · · · · · · · · · · ·	1		
Isi	ADDR[6:0]	10	A	CMD[7:0]	1 A 1	DATA[7:0]	Р
لمسل			· · ·				

Figure 7. Attempt To Write a Read-only Address (NACK After Data Sent By Master)

S ADDR[6:0] 0 A	CMD[7:0]	NP
-----------------	----------	----

Figure 8. Attempt To Read an Address Above 0x6B (NACK Command)

7.3.1.2 PC Time Out

The I^2C engine releases SDA and SCL if the I^2C bus is held low for two seconds. If the fuel gauge is holding the lines, releasing them frees them for the master to drive the lines. If an external condition is holding either of the lines low, the I^2C engine enters the low-power SLEEP mode.

Feature Description (continued)

7.3.1.3 PC Command Waiting Time

To ensure proper operation at 400 kHz, a $t_{(BUF)} \ge 66 \ \mu s$ bus-free waiting time must be inserted between all packets addressed to the fuel gauge. In addition, if the SCL clock frequency (f_{SCL}) is > 100 kHz, use individual 1-byte write commands for proper data flow control. The following diagram shows the standard waiting time required between issuing the control subcommand the reading the status result. For read-write standard command, a minimum of 2 seconds is required to get the result updated. For read-only standard commands, there is no waiting time required, but the host must not issue any standard command more than two times per second. Otherwise, the gauge could result in a reset issue due to the expiration of the watchdog timer.

S ADDR [6:0] 0 A	CMD [7:0]	A	DATA [7:0]	AP	<mark>66μs</mark>					
S ADDR [6:0] 0 A	CMD [7:0]	A	DATA [7:0]	AP	<mark>66μs</mark>					
S ADDR [6:0] 0 A	CMD [7:0]	A Sr	ADDR [6:0	D] 1 A	DATA [7:0]	A	DATA [7:0]	ΝP	66µs	
Waiting time inserted between two 1-byte write packets for a subcommand and reading results										

(required for 100 kHz < f_{scL} ≤ 400 kHz)

S ADDR [6:0] 0 A	CMD [7:0]		DATA [7:0]	A	DATA [7:0]	AP	66μs		
S ADDR [6:0] 0 A	CMD [7:0]	A Sr	ADDR [6:0]	1	A DATA [7:0]	A	DATA [7:0]	NP	66µs

Waiting time inserted between incremental 2-byte write packet for a subcommand and reading results

(acceptable for $f_{SCL} \le 100 \text{ kHz}$)

9	ADDR [6:0]	0	CMD [7:0]	A	Sr ADDR	[6:0] 1 A	DATA [7:0]	A	DATA [7:0]	A
	DATA [7:0]	A	DATA [7:0]	N P	66µs					

Waiting time inserted after incremental read

Figure 9. I²C Command Waiting Time

7.3.1.4 $m \ell^2 C$ Clock Stretching

A clock stretch can occur during all modes of fuel gauge operation. In SLEEP mode, a short \leq 100-µs clock stretch occurs on all I²C traffic as the device must wake-up to process the packet. In the other modes (INITIALIZATION, NORMAL), a \leq 4-ms clock stretching period may occur within packets addressed for the fuel gauge as the I²C interface performs normal data flow control.

7.4 Device Functional Modes

To minimize power consumption, the fuel gauge has several power modes: INITIALIZATION, NORMAL, SLEEP, and SHUTDOWN. The fuel gauge passes automatically between these modes, depending upon the occurrence of specific events, though a system processor can initiate some of these modes directly. For more details, see the *BQ27426 Technical Reference Manual* (SLUUBB0).

TEXAS INSTRUMENTS

www.ti.com.cn

8 Application and Implementation

NOTE

Information in the following application section is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The BQ27426 fuel gauge is a microcontroller peripheral that provides system-side fuel gauging for single-cell Lilon batteries. Battery fuel gauging with the fuel gauge requires connections only to PACK+ and PACK– for a removable battery pack or embedded battery circuit. To allow for optimal performance in the end application, special considerations must be taken to ensure minimization of measurement error through proper printed circuit board (PCB) board layout. Such requirements are detailed in *Design Requirements*.

8.2 Typical Applications

The BQ27426 device can be used with a high-side current sense resistor (as shown in Figure 10) or a low-side current sense resistor (as shown in Figure 11).

Figure 10. Typical Application with High-Side Current Sense Resistor

Typical Applications (continued)

Figure 11. Typical Application with Low-Side Current Sense Resistor

8.2.1 Design Requirements

As shipped from the Texas Instruments factory, the BQ27426 fuel gauge comes with three preprogrammed chemistry profiles and gauging parameters in ROM. Upon device reset, the contents of ROM are copied to associated volatile RAM-based data memory blocks. For proper operation, all parameters in RAM-based data memory require initialization. This can be done by updating data memory parameters in a lab/evaluation situation or by downloading the parameters from a host. The *BQ27426 Technical Reference Manual* (SLUUBB0) shows the default and typically expected values appropriate for most applications.

8.2.2 Detailed Design Procedure

8.2.2.1 BAT Voltage Sense Input

A ceramic capacitor at the input to the BAT pin is used to bypass AC voltage ripple to ground, greatly reducing its influence on battery voltage measurements. It proves most effective in applications with load profiles that exhibit high-frequency current pulses (that is, cell phones) but is recommended for use in all applications to reduce noise on this sensitive high-impedance measurement node.

8.2.2.2 Integrated LDO Capacitor

The fuel gauge has an integrated LDO with an output on the V_{DD} pin of approximately 1.8 V. A capacitor of value at least 2.2 μ F should be connected between the V_{DD} pin and V_{SS}. The capacitor must be placed close to the gauge IC and have short traces to both the V_{DD} pin and V_{SS}. This regulator must not be used to provide power for other devices in the system.

Typical Applications (continued)

8.2.2.3 Sense Resistor Selection

Any variation encountered in the resistance present between the SRP and SRN pins of the fuel gauge will affect the resulting differential voltage, and derived current, it senses. As such, it is recommended to select a sense resistor with minimal tolerance and temperature coefficient of resistance (TCR) characteristics. The standard recommendation based on best compromise between performance and price is a 1% tolerance, 50 ppm drift sense resistor with a 1-W power rating.

8.2.3 External Thermistor Support

The fuel gauge temperature sensing circuitry is designed to work with a negative temperature coefficient-type (NTC) thermistor with a characteristic 10-k Ω resistance at room temperature (25°C). The default curve-fitting coefficients configured in the fuel gauge specifically assume a Semitec 103AT type thermistor profile and so that is the default recommendation for thermistor selection purposes. Moving to a separate thermistor resistance profile (for example, JT-2 or others) requires an update to the default thermistor coefficients which can be modified in RAM to ensure highest accuracy temperature measurement performance.

Typical Applications (continued)

8.2.4 Application Curves

TEXAS INSTRUMENTS

www.ti.com.cn

9 Power Supply Recommendation

9.1 Power Supply Decoupling

The battery connection on the BAT pin is used for two purposes:

- To supply power to the fuel gauge
- To provide an input for voltage measurement of the battery.

A capacitor of value of at least 1 μ F should be connected between BAT and V_{SS}. The capacitor should be placed close to the gauge IC and have short traces to both the BAT pin and V_{SS}.

The fuel gauge has an integrated LDO with an output on the V_{DD} pin of approximately 1.8 V. A capacitor of value at least 2.2 μ F should be connected between the V_{DD} pin and V_{SS}. The capacitor should be placed close to the gauge IC and have short traces to both the V_{DD} pin and V_{SS}. This regulator must not be used to provide power for other devices in the system.

10 Layout

10.1 Layout Guidelines

- A capacitor of a value of at least 2.2 µF is connected between the V_{DD} pin and V_{SS}. The capacitor should be
 placed close to the gauge IC and have short traces to both the V_{DD} pin and V_{SS}. This regulator must not be
 used to provide power for other devices in the system.
- It is required to have a capacitor of at least 1.0 μF connect between the BAT pin and V_{SS} if the connection between the battery pack and the gauge BAT pin has the potential to pick up noise. The capacitor should be placed close to the gauge IC and have short traces to both the V_{DD} pin and V_{SS}.
- If the external pullup resistors on the SCL and SDA lines will be disconnected from the host during low-power operation, it is recommended to use external 1-MΩ pulldown resistors to V_{SS} to avoid floating inputs to the I²C engine.
- The value of the SCL and SDA pullup resistors should take into consideration the pullup voltage and the bus capacitance. Some recommended values, assuming a bus capacitance of 10 pF, can be seen in Table 1.

VPU	1.8 V		3.3 V				
D	Range	Typical	Range	Typical			
R _{PU}	$400 \ \Omega \le R_{PU} \le 37.6 \ k\Omega$	10 kΩ	900 $\Omega \le R_{PU} \le 29.2 \text{ k}\Omega$	5.1 kΩ			

Table 1. Recommended Values for SCL and SDA Pullup Resistors

- If the host is not using the GPOUT functionality, then it is recommended that GPOUT be connected to a GPIO of the host so that in cases where the device is in SHUTDOWN, toggling GPOUT can wake the gauge up from the SHUTDOWN state.
- If the battery pack thermistor is not connected to the BIN pin, the BIN pin should be pulled down to V_{SS} with a 10-k Ω resistor.
- The BIN pin should not be shorted directly to V_{DD} or V_{SS}.
- The actual device ground is pin 3 (V_{SS}).
- The SRP and SRN pins should be Kelvin connected to the R_{SENSE} terminals. SRP to the battery pack side of R_{SENSE} and SRN to the system side of the R_{SENSE}.
- Kelvin connects the BAT pin to the battery PACKP terminal.

10.2 Layout Example

NSTRUMENTS

Texas

11 器件和文档支持

11.1 文档支持

11.1.1 相关文档

- 《BQ27426 技术参考手册》 (SLUUBB0)
- 《单节电池电量监测计电路设计》(SLUA456)
- 《单节电池 Impedance Track 印刷电路板布局布线指南》(SLUA457)
- 《手持式电池电子产品中的 ESD 和 RF 迁移》(SLUA460)

11.2 社区资源

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.3 商标

Impedance Track, NanoFree, E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

11.4 静电放电警告

ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序,可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

11.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 机械、封装和可订购信息

以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更, 恕不另行通知, 且 不会对此文档进行修订。如需获取此数据表的浏览器版本, 请查阅左侧的导航栏。

重要声明和免责声明

Ⅱ 均以"原样"提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

所述资源可供专业开发人员应用TI产品进行设计使用。您将对以下行为独自承担全部责任:(1)针对您的应用选择合适的TI产品;(2)设计、验证并测试您的应用;(3)确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI对您使用所述资源的授权仅限于开发资源所涉及TI产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI及其代表造成的损害。

TI所提供产品均受TI的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。

邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2020 德州仪器半导体技术(上海)有限公司

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
BQ27426YZFR	ACTIVE	DSBGA	YZF	9	3000	RoHS & Green	SNAGCU	Level-1-260C-UNLIM	-40 to 85	BQ27426	Samples
BQ27426YZFT	ACTIVE	DSBGA	YZF	9	250	RoHS & Green	SNAGCU	Level-1-260C-UNLIM	-40 to 85	BQ27426	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <= 1000ppm threshold. Antimony trioxide based flame retardants must also meet the <= 1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com

PACKAGE OPTION ADDENDUM

10-Dec-2020

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
BQ27426YZFR	DSBGA	YZF	9	3000	180.0	8.4	1.78	1.78	0.69	4.0	8.0	Q1
BQ27426YZFT	DSBGA	YZF	9	250	180.0	8.4	1.78	1.78	0.69	4.0	8.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

13-Aug-2019

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
BQ27426YZFR	DSBGA	YZF	9	3000	182.0	182.0	20.0
BQ27426YZFT	DSBGA	YZF	9	250	182.0	182.0	20.0

YZF0009

PACKAGE OUTLINE

DSBGA - 0.625 mm max height

DIE SIZE BALL GRID ARRAY

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.

YZF0009

EXAMPLE BOARD LAYOUT

DSBGA - 0.625 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

 Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. See Texas Instruments Literature No. SNVA009 (www.ti.com/lit/snva009).

YZF0009

EXAMPLE STENCIL DESIGN

DSBGA - 0.625 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

重要声明和免责声明

Ⅱ 均以"原样"提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

所述资源可供专业开发人员应用TI产品进行设计使用。您将对以下行为独自承担全部责任:(1)针对您的应用选择合适的TI产品;(2)设计、 验证并测试您的应用;(3)确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI对您使用 所述资源的授权仅限于开发资源所涉及TI产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权 许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI及其代表造成的损害。

TI所提供产品均受TI的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。

邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2020 德州仪器半导体技术(上海)有限公司