

Datasheet

Automotive-grade 650 V, 200 A trench gate field-stop M series low-loss IGBT die in D8 packing

Features

- AEC-Q101 qualified
- Low-loss series IGBT
- Low $V_{CE(sat)}$ = 1.55 V (typ.) at I_C = 200 A
- Positive V_{CE(sat)} temperature coefficient
- Tight parameter distribution
- Maximum junction temperature: T_J = 175 °C
- 6 μs minimum short-circuit withstanding time at T_J = 150 °C

Applications

EGCD

Traction inverter for EV/HEV

Description

This device is an IGBT developed using an advanced proprietary trench gate fieldstop structure. The device is part of the M series IGBTs, which represent an optimal balance between inverter system performance and efficiency where the low-loss and the short-circuit functionality is essential. Furthermore, the positive V_{CE(sat)} temperature coefficient and the tight parameter distribution result in safer paralleling operation.

Product status link STG200M65F2D8AG

Product summary		
Order code	STG200M65F2D8AG	
V _{CE}	650 V	
I _{CN}	200 A	
Die size	9.73 x 10.23 mm ²	
Packing D8		

1 Mechanical parameters

Parameter		Value	Unit
Die size including scribe line		9.73 x 10.23	mm ²
Die thickness		70	μm
Front side passivation		Silico	n nitride
Emitter pad aiza	x4	4.26 x 1.94	mm ²
Emitter pad size	including gate pad (x4)	4.26 x 2.18	mm ²
Gate pad size		1.66 x 0.83	mm ²
Frank side westelling tiers	Composition	A	ICu
Front side metallization	Thickness	4.5	μm
Dook oido motallization	Composition	AI/Ti/	NiV/Ag
Back side metallization	Thickness	0.80	μm
Die bond		Electrically conduct	ive glue or soft solder
Recommended wire bonding		≤ 500	μm

Table 1. Mechanical parameters

2 Electrical ratings

Symbol	Parameter	Value	Unit
V _{CES}	Collector-emitter voltage (V_{GE} = 0 V)	650	V
V_{GE}	Gate-emitter voltage	±20	V
I _{CN}	Continuous collector current at T = 100 °C	200	Α
I _{CP} ^{(1) (2)}	Pulsed collector current	600	A
t _{sc} ⁽³⁾	Short-circuit withstand time V _{CC} = 360 V, V _{GE} = 15 V, V _{CE(peak)} \leq 650 V, T _{Jstart} \leq 150 °C	6	μs
TJ	Operating junction temperature range	-40 to 175	°C

Table 2. Absolute maximum ratings

1. Depending on thermal properties of assembly.

2. Pulse width limited by maximum junction temperature.

3. Not tested at chip level, verified by design/characterization. Allowed number of short-circuits < 1000; time between short-circuits > 1 s.

3 Electrical characteristics

(T_J = 25 °C unless otherwise specified)

Table 3. Static characteristics	(tested on wafer unle	ss otherwise specified)
Table J. Otatic characteristics	(lested on water une	ss otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{BR(CES)}	Collector-emitter breakdown voltage	I _C = 250 μA, V _{GE} = 0 V	650			V
V _{CE(sat)}	Collector-emitter saturation voltage	V _{GE} = 15 V, I _C = 200 A		1.55		V
V _{GE(th)}	Gate threshold voltage	$V_{CE} = V_{GE}$, $I_C = 3 \text{ mA}$	5	6	7	V
I _{CES} Collector cut-off current		V_{CE} = 650 V, V_{GE} = 0 V			100	μA
I _{GES}	Gate-emitter leakage current	V_{GE} = ±20 V, V_{CE} = 0 V			±600	nA
R _G Intrinsic gate resistance		f = 1 MHz		2.5		Ω

Table 4. Electrical characteristics (not tested at chip level, verified by design/characterization)

Symbol	Parameter Test conditions		Min.	Тур.	Max.	Unit
Varia	Collector-emitter saturation	aturation V_{GE} = 15 V, I _C = 200 A	-	1.55	2.3	V
V _{CE(sat)}	voltage	V_{GE} = 15 V, I_C = 200 A T_J = 175 $^\circ C$	-	1.95		V
C _{ies}	Input capacitance		-	17.8		nF
C _{oes}	Output capacitance	V_{CE} = 25 V, f = 1 MHz V_{GE} = 0 V	-	0.7		nF
C _{res}	Reverse transfer capacitance	-		0.37		nF
Qg	Total gate charge		-	650		nC
Q _{ge}	Gate-emitter charge V_{CC} = 400 V, I _C = 200 A, V _{GE} = 0 to 15 V	-	130		nC	
Q _{gc}	Gate collector charge			240		nC

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time		-	134	-	ns
t _r	Current rise time	V_{CC} = 300 V, I _c = 200 A, V _{GE} = 15/-15 V, R _G = 2 Ω	-	41	-	ns
t _{d(off)}	Turn-off delay time		-	151	-	ns
t _f	Current fall time		-	88	-	ns
E _{off} ⁽¹⁾	Turn-off switching energy		-	5.5	-	mJ
t _{d(on)}	Turn-on delay time	V _{CC} = 300 V, I _c = 200 A, V _{GE} = 15/-15 V, R _G = 2 Ω, T _J = 175 °C	-	173	-	ns
t _f	Current rise time		-	32	-	ns
t _{d(off)}	Turn-off delay time		-	58	-	ns
t _f	Current fall time		-	110	-	ns
E _{off} ⁽¹⁾	Turn-off switching energy		-	7.0	-	mJ

Table 5. Switching characteristics on inductive load (not tested at chip level, verified by design/ characterization)

1. Including the tail of the collector current.

Note: Switching characteristics and thermal properties are strongly dependent on module design and mounting technology. These results are obtained using an ST custom package.

4 Die layout

57

Figure 1. Die drawing (dimensions are in mm)

Table 6. Die delivery

Package option	Description	Picture
D8	Wafer tested, inked, cut; die is picked up and submitted to automatic visual inspection on the back side. Each die is tested and submitted again to visual inspection on both top and back sides. Finally, each die is placed inside the reel pocket, submitted once again to a top-side visual inspection and sealed with a cover tape.	

Figure 2. Tape drawing (dimensions are in mm)

5 Additional information

5.1 Additional testing and screening

For customers requiring products supplied as KGD (known good die) or requiring specific die level testing, please contact the local ST sales office.

If KGD is requested, the shipping delivery is D8.

5.2 Shipping

57

Several shipping options are offered, consult the local ST sales office for availability:

- Die on film sticky foil suffix on sales type D7
- Carrier tape suffix on sales type D8

5.3 Handling

- Products must be handled at ESD safe workstations only. Standard ESD precautions and safe work environments are as defined in MIL-HDBK-263
- Products must be handled in a class 1000 only or better designated clean room environment
- Singular die is not to be handled with tweezers. A vacuum wand with a non-metallic ESD protected tip should be used

5.4 Wafer/die and storage

Proper storage conditions are necessary to prevent product contamination and/or degradation after shipment.

Revision history

Date	Revision	Changes
11-Aug-2015	1	First release.
02-Feb-2017	2	Updated: features in cover page, <i>Section 1: "Mechanical parameters"</i> . Minor text changes.
03-Jul-2017	3	Updated features, applications and description in cover page. Minor text changes in <i>Section 2: "Electrical ratings"</i> and <i>Section 4: "Additional information"</i> .
04-May-2021	4	Modified Table 1. Mechanical parameters. Minor text changes.

Table 7. Document revision history

Contents

1	Mech	anical parameters	.2
2	Elect	rical ratings	. 3
3	Elect	rical characteristics	.4
4	Die la	yout	.6
5	Addit	ional information	8
	5.1	Additional testing and screening	8
	5.2	Shipping	. 8
	5.3	Handling	. 8
	5.4	Wafer/die and storage	8
Revi	sion h	listory	.9

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics - All rights reserved