

LM5134

ZHCSEL1C-MAY 2012-REVISED FEBRURARY 2016

LM5134 具有 PILOT 输出的单路 7.6A 峰值电流低侧栅极驱动器

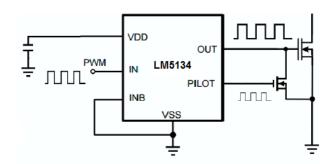
特性

- 主输出具有 7.6A/4.5A 的峰值灌电流/拉电流驱动能
- PILOT 输出具有 820mA/660mA 的峰值灌电流/拉 电流驱动能力
- 4V 至 12.6V 单电源
- 反相和非反相输入之间的延迟时间匹配
- TTL/CMOS 逻辑输入
- 高达 14V 的逻辑输入(与 VDD 电压无关)
- -40°C 至 125°C 的结温范围

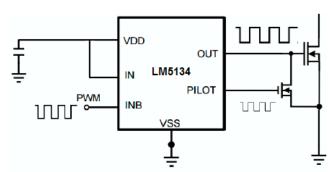
2 应用

- 电机驱动器
- 固态功率控制器
- 功率因数校正转换器

3 说明


LM5134 是一款高速单路低侧驱动器,具备 7.6A/4.5A 的峰值灌电流/拉电流驱动能力。LM5134 具有反相和 非反相输入,为用户控制场效应晶体管 (FET) 提供了 更大的灵活性。LM5134 具有 1 个主输出 (OUT) 和 1 个额外的栅极驱动输出 (PILOT)。PILOT 引脚逻辑与 OUT 引脚互补,并且可用于驱动位于主功率 FET 附近 的较小 MOSFET。该配置可最大限度减少关断环路, 并进一步降低寄生电感。这对于驱动高速 FET 或多个 并联的 FET 特别有用。LM5134 提供 6 引脚 SOT-23 封装以及带外露焊盘的 6 引脚 WSON 封装, 第二种封装有助于提升散热性能。

器件信息(1)

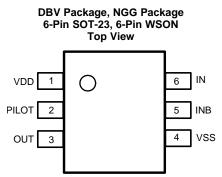

器件型号	封装	封装尺寸 (标称值)	
LM5404	SOT-23 (6)	2.90mm x 1.60mm	
LM5134	WSON (6)	3.00mm × 3.00mm	

(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。

非反相输入

反相输入

		目录			
1	特性	. 1		7.3 Feature Description	12
2	应用	. 1		7.4 Device Functional Modes	12
3	说明	. 1	8	Application and Implementation	14
4	修订历史记录			8.1 Application Information	14
5	Pin Configuration and Functions			8.2 Typical Application	14
6	Specifications		9	Power Supply Recommendations	17
•	6.1 Absolute Maximum Ratings		10	Layout	18
	6.2 ESD Ratings			10.1 Layout Guidelines	
	6.3 Recommended Operating Conditions			10.2 Layout Example	
	6.4 Thermal Information	. 4		10.3 Power Dissipation	
	6.5 Electrical Characteristics	. 4	11	器件和文档支持	
	6.6 Switching Characteristics	. 6		11.1 社区资源	
	6.7 Typical Characteristics	. 8		11.2 商标	
7	Detailed Description	12		11.3 静电放电警告	
	7.1 Overview			11.4 Glossary	
	7.2 Functional Block Diagram	12	12	机械、封装和可订购信息	20


4 修订历史记录

注: 之前版本的页码可能与当前版本有所不同。

Cł	nanges from Revision B (April 2013) to Revision C	Page
•	已添加 <i>ESD</i> 额定值表,特性 描述部分,器件功能模式,应用和实施部分,电源相关建议部分,布局部分,器件和文档支持部分以及机械、封装和可订购信息部分	1
CI	nanges from Revision A (April 2013) to Revision B	Page
•	Changed layout of National Data Sheet to TI format	18

5 Pin Configuration and Functions

Pin Functions

	1 III 1 dilottotis					
P	IN	1/0	DESCRIPTION	APPLICATION INFORMATION		
NAME	NO.	1/0	DESCRIPTION	AFFLICATION INFORMATION		
VDD	1	_	Gate drive supply	Locally decouple to VSS using low ESR/ESL capacitor located as close as possible to the IC.		
PILOT	2	0	Gate drive output for an external turnoff FET	Connect to the gate of a small turnoff MOSFET with a short, low inductance path. The turnoff FET provides a local turnoff path.		
OUT	3	0	Gate drive output for the power FET	Connect to the gate of the power FET with a short, low inductance path. A gate resistor can be used to eliminate potential gate oscillations.		
VSS	4	_	Ground	All signals are referenced to this ground.		
INB	5	I	Inverting logic input	Connect to VSS when not used.		
IN	6	I	Non-inverting logic input	Connect to VDD when not used.		
EP	EP	_	Exposed Pad	It is recommended that the exposed pad on the bottom of the package be soldered to ground plane on the PC board, and that ground plane extend out from beneath the IC to help dissipate heat.		

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

		MIN	MAX	UNIT	
Din voltage	VDD to VSS	-0.3	14	\/	
Pin voltage	IN, INB to VSS	-0.3	14	ľ	
Junction temperature, T _J			150	°C	
Storage temperature, T _{stg}		- 55	150	°C	

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

	MIN	NOM MAX	UNIT
Gate drive supply, VDD	4	12.6	V
Operating junction temperature	-40	125	°C

6.4 Thermal Information

			LM5134			
	THERMAL METRIC ⁽¹⁾	DBV (SOT-23)	NGG (WSON)	UNIT		
		6 PINS	6 PINS			
$R_{\theta JA}$	Junction-to-ambient thermal resistance	105.9	51	°C/W		
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	52.1	47	°C/W		
$R_{\theta JB}$	Junction-to-board thermal resistance	21	25.3	°C/W		
Ψ_{JT}	Junction-to-top characterization parameter	1.2	0.6	°C/W		
ΨЈВ	Junction-to-board characterization parameter	20.5	24.5	°C/W		
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	N/A	5.8	°C/W		

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

 $T_J = 25^{\circ}\text{C}$, VDD = 12 V, unless otherwise specified. Minimum and Maximum limits are ensured through test, design, or statistical correlation. Typical values represent the most likely parametric norm at $T_J = 25^{\circ}\text{C}$, and are provided for reference purposes only. (1).

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
POWER SU	PPLY						
VDD	VDD operating voltage	$T_{J} = -40^{\circ}\text{C to } +125^{\circ}\text{C}$		4		12.6	V
11)/1 0	VDDdom.oltono lo al.ot	VDD vision	T _J = 25°C		3.6		V
UVLO	VDD undervoltage lockout	VDD rising	$T_J = -40^{\circ}\text{C to } +125^{\circ}\text{C}$	3.25		4	V
	VDD undervoltage lockout hysteresis				0.36		V
	VDD undervoltage lockout to main output delay time	VDD rising			500		ns
	VDD quippoent gurrent	IN = INB = VDD	T _J = 25°C		0.8		A
I _{DD}	VDD quiescent current	IIN = IIND = VDD	$T_J = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			2	mA
OUTPUT							
	OT00 ()	VDD = 10 V, I _{OUT} =	$T_J = 25^{\circ}C$		0.15		Ω
R _{ON-DW}		–100 mA	$T_J = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			0.45	
(SOT23-6)		VDD = 4.5 V, I _{OUT} =	$T_J = 25^{\circ}C$		0.2		Ω
		–100 mA	$T_J = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			0.5	12
		VDD = 10 V, I _{OUT} =	$T_J = 25^{\circ}C$		0.2		Ω
R _{ON-DW}	Main output resistance -	–100 mA	$T_J = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			0.5	22
(WSON)	pulling down	VDD = 4.5 V, I _{OUT} =	$T_J = 25^{\circ}C$		0.25		Ω
		–100 mA	$T_J = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			0.55	22
	Power-off pulldown resistance	VDD = 0 V, I _{OUT} = -10 mA			1.5	10	Ω
	Power-off pulldown clamp voltage	VDD = 0 V, I _{OUT} = -10 mA			0.7	1	V
	Peak sink current	C _L = 10,000 pF			7.6		Α

⁽¹⁾ Min and Max limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlation using Statistical Quality Control (SQC) methods. Limits are used to calculate Average Outgoing Quality Level (AOQL).

Electrical Characteristics (continued)

 $T_J = 25$ °C, VDD = 12 V, unless otherwise specified. Minimum and Maximum limits are ensured through test, design, or statistical correlation. Typical values represent the most likely parametric norm at $T_J = 25$ °C, and are provided for reference purposes only.⁽¹⁾

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
		VDD = 10 V,	$T_J = 25^{\circ}C$		0.7		•
R _{ON-UP}	Main output resistance -	$I_{OUT} = 50 \text{ mA}$	$T_J = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			1.3	Ω
(SOT23-6)	pulling up	VDD = 4.5 V,	$T_J = 25^{\circ}C$		1		
		$I_{OUT} = 50 \text{ mA}$	$T_J = -40^{\circ}\text{C} \text{ to } +125^{\circ}\text{C}$			1.9	Ω
		VDD = 10 V,	$T_J = 25^{\circ}C$		0.75		
R _{ON-UP}	Main output resistance -	$I_{OUT} = 50 \text{ mA}$	$T_J = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			1.2	Ω
(WSON)	pulling up	VDD = 4.5 V,	$T_J = 25^{\circ}C$		1.14		
		$I_{OUT} = 50 \text{ mA}$	$T_J = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			1.85	Ω
	Peak source current	C _L = 10,000 pF			4.5		Α
PILOT		-					
		VDD = 10 V,	$T_J = 25^{\circ}C$		3.7		
_	PILOT output resistance -	$I_{OUT} = -100 \text{ mA}$	$T_J = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			9	Ω
R_{ONP-DW}	pulling down	VDD = 4.5 V,	$T_J = 25^{\circ}C$		4.7		•
		$I_{OUT} = -100 \text{ mA}$	$T_J = -40^{\circ}\text{C} \text{ to } +125^{\circ}\text{C}$			12	Ω
	Peak sink current	C _L = 330 pF			820		mA
		VDD = 10 V,	$T_J = 25^{\circ}C$		6		
_	PILOT output resistance -	_ · · · · ·	$T_J = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			11	Ω
R _{ONP-UP}	pulling up	VDD = 4.5 V,	$T_J = 25^{\circ}C$		10.7		•
		$I_{OUT} = 50 \text{ mA}$	$T_J = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			20	Ω
	Peak source current	C _L = 330 pF			660		mA
LOGIC INPL	JT	-		1.			
.,		LM5134A, $T_J = -40$	0°C to +125°C	0.67 × VDD			.,
V_{IH}	Logic 1 input voltage	LM5134B, $T_J = -40$	0°C to +125°C	2.4			V
	1 1 01 1	LM5134A, T _J = -40	0°C to +125°C			0.33 × VDD	.,
V_{IL}	Logic 0 input voltage	LM5134B, T _J = -40	0°C to +125°C			0.8	V
.,		LM5134A					.,
V_{HYS}	Logic-input hysteresis	LM5134B			0.68		V
		INID 1/DD 5	$T_J = 25^{\circ}C$		0.001		
	Logic-input current	INB = VDD or 0	$T_J = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			10	μΑ
THERMAL F	RESISTANCE	+		!			
•		SOT23-6			90		°C/W
θ_{JA}	Junction to ambient	WSON-6			60		°C/W

6.6 Switching Characteristics

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
FOR VD	D = +10 V						
		C _L = 1000 pF			3		
t _R	OUT rise time	C _L = 5000 pF			10		ns
		C _L = 10,000 pF			20		
		C _L = 1000 pF			2		
t _F	OUT fall time	C _L = 5000 pF			4.7		ns
		C _L = 10,000 pF			7.2		
	0.17		T _J = 25°C		17		
t _{D-ON}	OUT turnon propagation delay	C _L = 1000 pF	$T_J = -40$ °C to +125°C			40	ns
	OUT toward to a second second second		T _J = 25°C		12		
t _{D-OFF}	OUT turnoff propagation delay	C _L = 1000 pF	$T_J = -40^{\circ}\text{C to} +125^{\circ}\text{C}$			25	ns
	Main output break-before- make time				2.5		ns
t _{PR}	PILOT rise time	C _L = 330 pF			5.3		ns
t _{PF}	PILOT fall time	C _L = 330 pF			3.9		ns
t _{PD-ON}	OUT turnoff to PILOT turnon propagation delay	C _L = 330 pF			4.2		ns
t _{PD-OFF}	PILOT turnoff to OUT turnon propagation delay	C _L = 330 pF			6.4		ns
FOR VD	D = +4.5 V			+		•	
		C _L = 1000 pF			5		
t_R	Rise time	C _L = 5000 pF			14		ns
		$C_L = 10,000 \text{ pF}$	L = 10,000 pF		24		
		C _L = 1000 pF			2.3		
t _F	Fall time	$C_L = 5000 \text{ pF}$			5.4		ns
		C _L = 10,00 0pF		7.2			
	OLIT turnen prepagation		$T_J = 25^{\circ}C$		26		
t _{D-ON}	OUT turnon propagation delay	C _L = 1000 pF	$T_J = -40^{\circ}\text{C to} +125^{\circ}\text{C}$			50	ns
	OUT toward to a second second second		T _J = 25°C		20		
t _{D-OFF}	OUT turnoff propagation delay	$C_L = 1000 \text{ pF}$ $T_J = -40^{\circ}\text{C to}$ +125°C				45	ns
	Main output break-before- make time				4.2		ns
t _{PR}	PILOT rise time	C _L = 330 pF			9.6		ns
t _{Pf}	PILOT fall time	C _L = 330 pF			3.7		ns
t _{PD-ON}	OUT turnoff to PILOT turnon propagation delay	C _L = 330 pF				ns	
t _{PD-OFF}	PILOT turnoff to OUT turnon propagation delay	C _L = 330 pF			11.8		ns

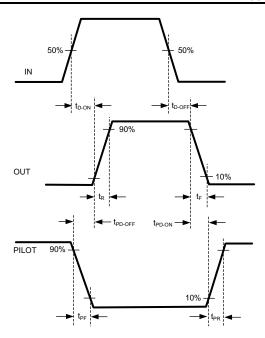


Figure 1. Timing Diagram — Noninverting Input

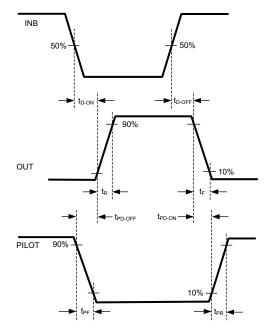
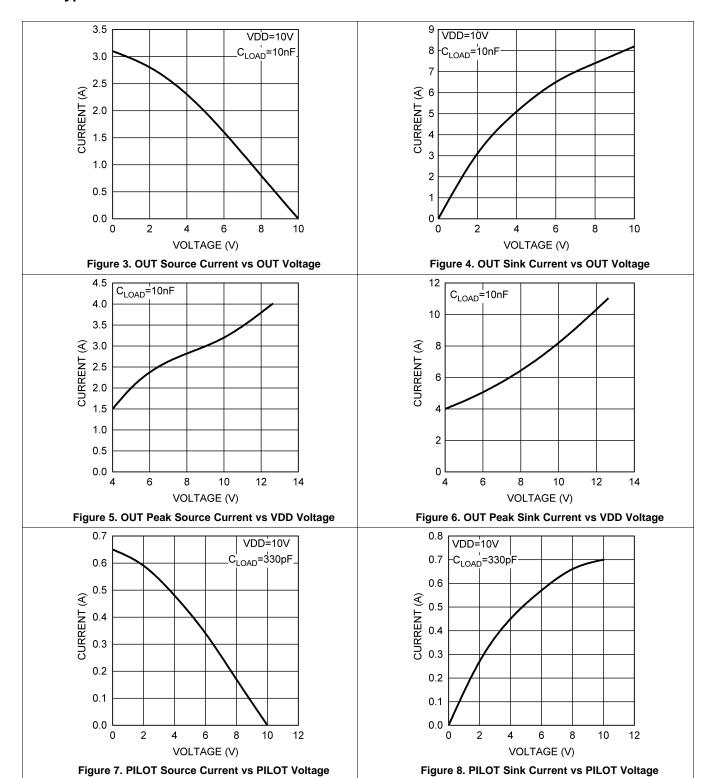



Figure 2. Timing Diagram — Inverting Input

TEXAS INSTRUMENTS

6.7 Typical Characteristics

Typical Characteristics (continued)

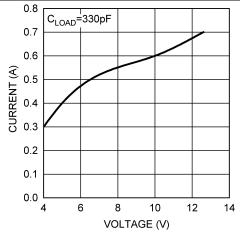


Figure 9. PILOT Peak Source Current vs VDD Voltage

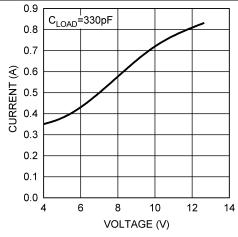


Figure 10. PILOT Peak Sink Current vs VDD Voltage

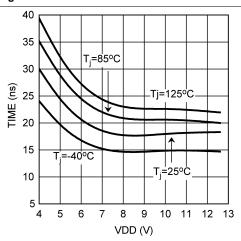


Figure 11. OUT Turnon Propagation Delay vs VDD

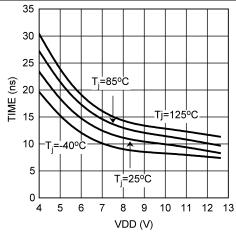


Figure 12. OUT Turnoff Propagation Delay vs VDD

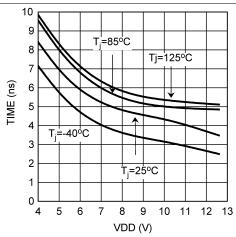


Figure 13. OUT Turnoff to PILOT Turnon Propagation Delay vs VDD

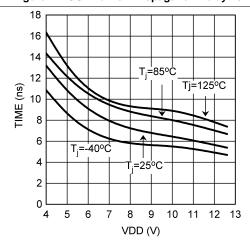
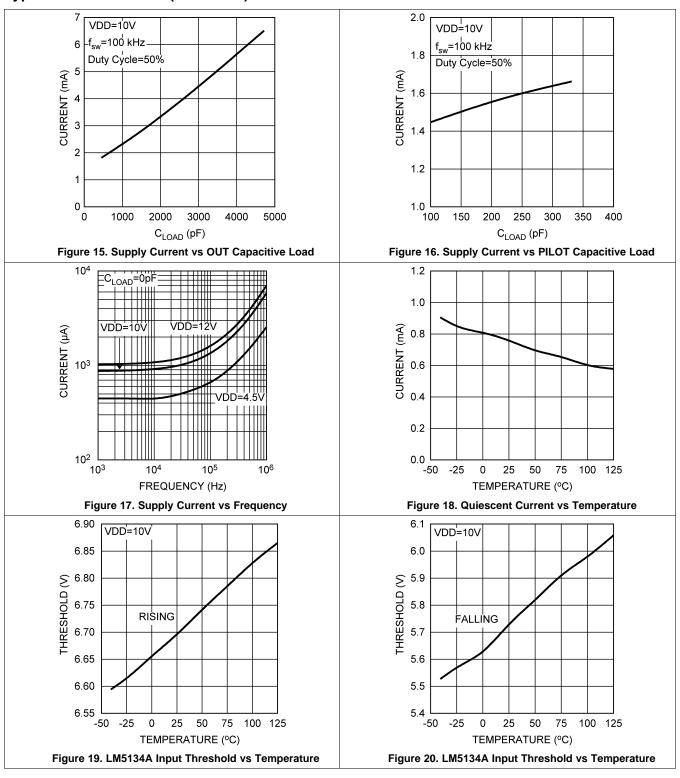
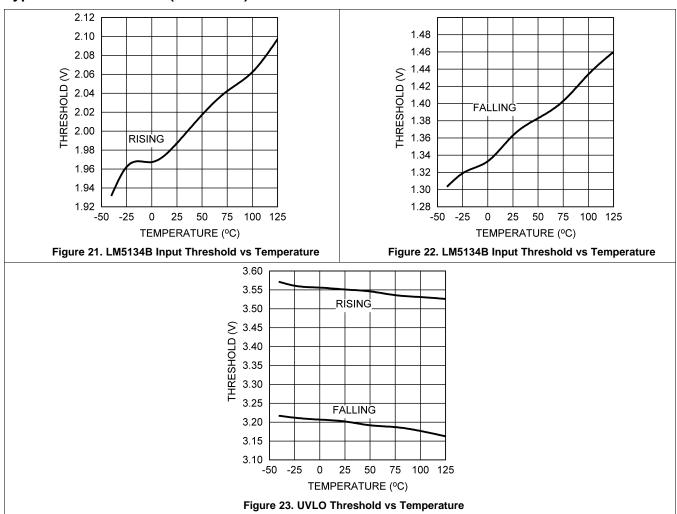
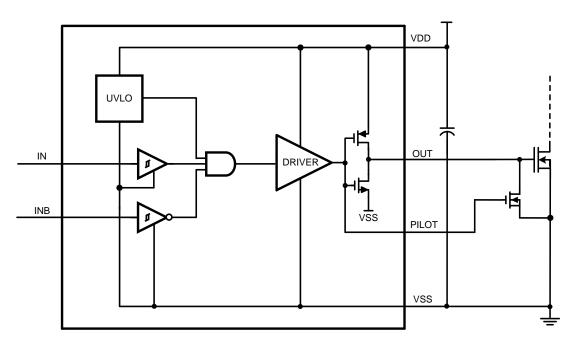



Figure 14. PILOT Turnoff to OUT Turnon Propagation Delay vs VDD



Typical Characteristics (continued)

Typical Characteristics (continued)



7 Detailed Description

7.1 Overview

The LM5134 is a single low-side gate driver with one main output, OUT, and a complementary output PILOT. The OUT pin has high 7.6-A and 4.5-A peak sink and source current and can be used to drive large power MOSFETs or multiple MOSFETs in parallel. The PILOT pin has 820-mA and 660-mA peak sink and source current, and is intended to drive an external turnoff MOSFET, as shown in *Functional Block Diagram*. The external turnoff FET can be placed close to the power MOSFETs to minimize the loop inductance, and therefore helps eliminate stray inductance induced oscillations or undesired turnon. This feature also provides the flexibility to adjust turnon and turnoff speed independently.

7.2 Functional Block Diagram

7.3 Feature Description

When using the external turnoff switch, it is important to prevent the potential shoot-through between the external turnoff switch and the LM5134 internal pullup switch. The propagation delay, $T_{PD\text{-}ON}$ and $T_{PD\text{-}OFF}$, has been implemented in the LM5134 between the PILOT and the OUT pins, as depicted in the timing diagram. The turnon delay $T_{PD\text{-}ON}$ is designed to be shorter than the turnoff delay $T_{PD\text{-}OFF}$ because the rising time of the external turnoff switch can attribute to the additional delay time. It is also desirable to minimize $T_{PD\text{-}ON}$ to favor the fast turnoff of the power MOSFET.

The LM5134 offers both inverting and noninverting inputs to satisfy requirements for inverting and non-inverting gate drive signals in a single device type. Inputs of the LM5134 are TTL and CMOS Logic compatible and can withstand input voltages up to 14 V regardless of the VDD voltage. This allows inputs of the LM5134 to be connected directly to most PWM controllers.

The LM5134 includes an Undervoltage Lockout (UVLO) circuit. When the VDD voltage is below the UVLO threshold voltage, the IN and INB inputs are ignored, and if there is sufficient VDD voltage, the OUT is pulled low. In addition, the LM5134 has an internal PNP transistor in parallel with the output NMOS. Under the UVLO condition, the PNP transistor will be on and clamp the OUT voltage below 1 V. This feature ensures the OUT remains low even with insufficient VDD voltage.

7.4 Device Functional Modes

Table 1 lists the logic options for the device and Table 2 lists the device truth table.

Table 1. Input/Output Options

BASE PART NUMBER	LOGIC INPUT
LM5134A	CMOS
LM5134B	TTL

Table 2. Truth Table

IN	INB	OUT	PILOT
L	L	L	Н
L	Н	L	Н
Н	L	Н	∟
Н	Н	L	Н

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

High-current gate-driver devices are required in switching power applications for a variety of reasons. To affect fast switching of power devices and reduce associated switching power losses, a powerful gate driver is employed between the PWM output of controllers and the gates of the power-semiconductor devices. Further, gate drivers are indispensable when there are times that the PWM controller cannot directly drive the gates of the switching devices. With advent of digital power, this situation is often encountered because the PWM signal from the digital controller is often a 3.3-V logic signal, which is not capable of effectively turning on a power switch. A level-shifting circuitry is needed to boost the 3.3-V signal to the gate-drive voltage (such as 12 V) to fully turn on the power device and minimize conduction losses. Because traditional buffer-drive circuits based on NPN/PNP bipolar transistors in totem-pole arrangement, being emitter-follower configurations, lack level-shifting capability, the circuits prove inadequate with digital power.

Gate drivers effectively combine both the level-shifting and buffer-drive functions. Gate drivers can also perform other tasks, such as minimizing the effect of high-frequency switching noise by locating the high-current driver physically close to the power switch, driving gate-drive transformers and controlling floating power-device gates, and reducing power dissipation and thermal stress in controllers by moving gate-charge power losses into itself.

Finally, emerging wide-bandgap power-device technologies, such as GaN based switches capable of supporting very high switching frequency operation, are driving special requirements in terms of gate-drive capability. These requirements include operation at low VDD voltages (5 V or lower), low propagation delays, and availability in compact, low-inductance packages with good thermal capability. In summary, gate-driver devices are extremely important components in switching power combining benefits of high-performance, low cost, component count and board space reduction with a simplified system design.

8.2 Typical Application

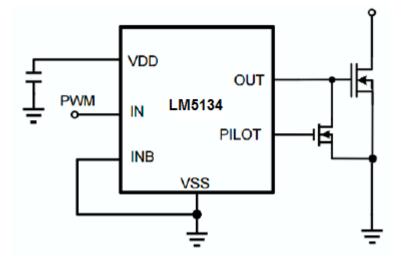


Figure 24. Application Schematic

Typical Application (continued)

8.2.1 Design Requirements

When selecting the proper gate driver device for an end application, some design considerations must first be evaluated to make the most appropriate selection. Among these considerations are input-to-output configuration, the input threshold type, bias supply voltage levels, peak source and sink currents, availability of independent enable and disable functions, propagation delay, power dissipation, and package type.

PARAMETER

Input-to-output logic

Input threshold type

V_{DD} bias supply voltage

Peak source and sink currents

EXAMPLE VALUE

Noninverting

Logic level

10 V (minimum), 113 V (nominal), 15 V (peak)

Minimum 1.65-A source, minimum 1.65-A sink

Enable and disable function

Propagation delay

Maximum 40 ns or less

Table 3. Design Parameters

8.2.2 Detailed Design Procedure

8.2.2.1 Input-to-Output Logic

The design should specify which type of input-to-output configuration should be used. If turning on the power MOSFET when the input signal is in high state is preferred, then the noninverting configuration must be selected. If turning off the power MOSFET when the input signal is in high state is preferred, the inverting configuration must be chosen. The LM5134 device can be configured in either an inverting or noninverting input-to-output configuration, using the IN- or IN+ pins, respectively. To configure the device for use in inverting mode, tie the IN+ pin to VDD and apply the input signal to the IN- pin. For the noninverting configuration, tie the IN- pin to GND and apply the input signal to the IN+ pin.

8.2.2.2 Input Threshold Type

The type of controller used determines the input voltage threshold of the gate driver device. The LM5134B device features a TTL and CMOS-compatible input threshold logic, with wide hysteresis. The threshold voltage levels are low voltage and independent of the VDD supply voltage, which allows compatibility with both logic-level input signals from microcontrollers, as well as higher-voltage input signals from analog controllers.

The LM5134A device features higher voltage thresholds for greater noise immunity, and controllers with higher drive voltages.

See *Electrical Characteristics* for the actual input threshold voltage levels and hysteresis specifications for the LM5134 device.

8.2.2.3 V_{DD} Bias Supply Voltage

The bias supply voltage applied to the VDD pin of the device should never exceed the values listed in *Recommended Operating Conditions*. However, different power switches demand different voltage levels to be applied at the gate terminals for effective turnon and turnoff. With an operating range from 4 V to 12 V, the LM5134 device can be used to drive a variety of power switches, such as Si MOSFETs (for example,

VGS = 4.5 V, 10 V, 12 V), BJTs, and wide-band gap power semiconductors (such as GaN, certain types of which allow no higher than 6 V to be applied to the gate terminals).

8.2.2.4 Peak Source and Sink Currents

Generally, to minimize switching power losses, the switching speed of the power switch during turnon and turnoff should be as fast as possible. However, very fast transitions on the Drain node voltage can lead to unwanted emissions for EMI, and the turnon speed is often deliberately slowed down by placing a series resistor between the Drive output and MOSFET gate to reduce these emissions.

The speed at which the drain node rises during turnoff is typically dictated by the current in the inductor at turnoff, and thus is not dependent on the turnoff current of the drive circuit. However, depending on the amount of current flowing through the drain to gate capacitance of the MOSFET as the drain voltage rises and the impedance to ground of the drive circuit, it is possible for the gate voltage to exceed the threshold voltage of the FET and turn the FET back on, known as a false turnon.

For these reasons, turn the FET off as fast as possible. The LM5134 allows the flexibility of different turnon and turnoff speeds, and avoids false turnon by providing a pilot output to drive a small pulldown MosFET, which can be placed close to the main FET and reduces the impedance from gate to ground on turnoff.

Using the example of a power MOSFET, the system requirement for the switching speed is typically described in terms of the slew rate of the drain-to-source voltage of the power MOSFET (such as dV/dt). For example, the system requirement might state that a SPP20N60C3 power MOSFET must be turned on with a dV/dt of 20 V/ns or higher, under a DC bus voltage of 400 V in a continuous-conduction-mode (CCM) boost PFC converter application. This type of application is an inductive hard-switching application, and reducing switching power losses is critical. This requirement means that the entire drain-to-source voltage swing during power MOSFET turnon event (from 400 V in the OFF state to V DS(on) in on state) must be completed in approximately 20 ns or less. When the drain-to-source voltage swing occurs, the Miller charge of the power MOSFET (QGD parameter in SPP20N60C3 power MOSFET data sheet = 33 nC typical) is supplied by the peak current of gate driver. According to the power MOSFET inductive switching mechanism, the gate-to-source voltage of the power MOSFET at this time is the Miller plateau voltage, which is typically a few volts higher than the threshold voltage of the power MOSFET, VGS(TH). To achieve the targeted dV/dt, the gate driver must be capable of providing the QGD charge in 20 ns or less. In other words, a peak current of 1.65 A (= 33 nC / 20 ns) or higher must be provided by the gate driver. The LM5134 gate driver is capable of providing 4.5-A peak sourcing current, which exceeds the design requirement and has the capability to meet the switching speed needed. The 2.7x overdrive capability provides an extra margin against part-to-part variations in the QGD parameter of the power MOSFET, along with additional flexibility to insert external gate resistors and fine tune the switching speed for efficiency versus EMI optimizations.

However, in practical designs the parasitic trace inductance in the gate drive circuit of the PCB will have a definitive role to play on the power MOSFET switching speed. The effect of this trace inductance is to limit the dl/dt of the output current pulse of the gate driver. To illustrate this, consider output current pulse waveform from the gate driver to be approximated to a triangular profile, where the area under the triangle (½ x I PEAK x time) would equal the total gate charge of the power MOSFET (QG parameter in SPP20N60C3 power MOSFET datasheet = 87 nC typical). If the parasitic trace inductance limits the dl/dt, then a situation may occur in which the full peak current capability of the gate driver is not fully achieved in the time required to deliver the QG required for the power MOSFET switching. In other words, the time parameter in the equation would dominate and the I PEAK value of the current pulse would be much less than the true peak current capability of the device, while the required QG is still delivered. Because of this, the desired switching speed may not be realized, even when theoretical calculations indicate the gate driver is capable of achieving the targeted switching speed. Thus, placing the gate driver device very close to the power MOSFET and designing a tight gate drive-loop with minimal PCB trace inductance is important to realize the full peak-current capability of the gate driver.

The LM5134 is capable of driving a small FET local to the Gate of the main MOSFET to reduce the impact of this parasitic inductance and achieve the high dV/dt required on turnoff. The nominal gate voltage plateau of the SPP20N60C3 is given as 5.5 V. Thus to achieve the required sink current of 1.65 A would require an Rds_on of 3.3 Ω for the pilot FET. Lower on resistance gives further margin in the turnoff speed as described above, and reduces the potential for false turnon.

8.2.2.5 Enable and Disable Function

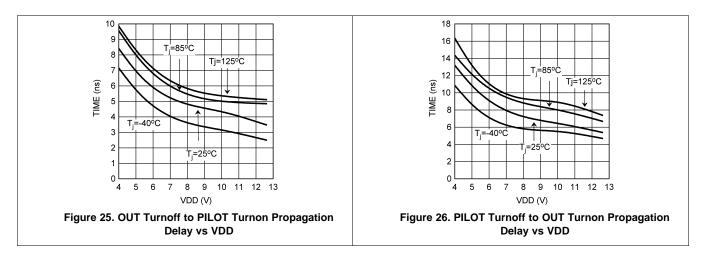
Certain applications demand independent control of the output state of the driver, without involving the input signal. A pin offering an enable and disable function achieves this requirement. The LM5134 device offers two input pins, IN+ and IN-, both of which control the state of the output as listed in Table 2. Based on whether an inverting or noninverting input signal is provided to the driver, the appropriate input pin can be selected as the primary input for controlling the gate driver. The other unused input pin can be used for the enable and disable functionality. If the design does not require an enable function, the unused input pin can be tied to either the VDD pin (in case IN+ is the unused pin), or GND (in case IN- is unused pin) to ensure it does not affect the output status.

8.2.2.6 Propagation Delay

The acceptable propagation delay from the gate driver is dependent on the switching frequency at which it is used, and the acceptable level of pulse distortion to the system. The LM5134 device features industry best-inclass 17-ns (typical) propagation delays, which ensure very little pulse distortion and allow operation at very high frequencies. See *Electrical Characteristics* for the propagation and switching characteristics of the LM5134 device.

8.2.2.7 PILOT MOSFET Selection

In general, a small-sized 20-V MOSFET with logic level gates can be used as the external turnoff switch. To achieve a fast switching speed and avoid the potential shoot-through, select a MOSFET with the total gate charge less than 3 nC. Verify that no shoot-through occurs for the entire operating temperature range. In addition, a small Rds(on) is preferred to obtain the strong sink current capability. The power losses of the PILOT MOSFET can be estimated in Equation 1.


$$P_g = 1/2 \times Q_{go} \times VDD \times F_{SW}$$

where

• Q_{ao} is the total input gate charge of the power MOSFET

(1)

8.2.3 Application Curves

9 Power Supply Recommendations

A low ESR/ESL ceramic capacitor must be connected close to the IC, between VDD and VSS pins to support the high peak current being drawn from VDD during turnon of the FETs. Place the VDD decoupling capacitor on the same side of the PC board as the driver. The inductance of via holes can impose excessive ringing on the IC pins.

10 Layout

10.1 Layout Guidelines

Attention must be given to board layout when using LM5134. Some important considerations include:

- 1. The first priority in designing the layout of the driver is to confine the high peak currents that charge and discharge the FETs gate into a minimal physical area. This will decrease the loop inductance and minimize noise issues on the gate.
- 2. To reduce the loop inductance, the driver should be placed as close as possible to the FETs. The gate trace to and from the FETs are recommended to be placed closely side by side, or directly on top of one another.
- 3. The parasitic source inductance, along with the gate capacitor and the driver pulldown path, can form a LCR resonant tank, resulting in gate voltage oscillations. An optional resistor or ferrite bead can be used to damp the ringing.

10.2 Layout Example

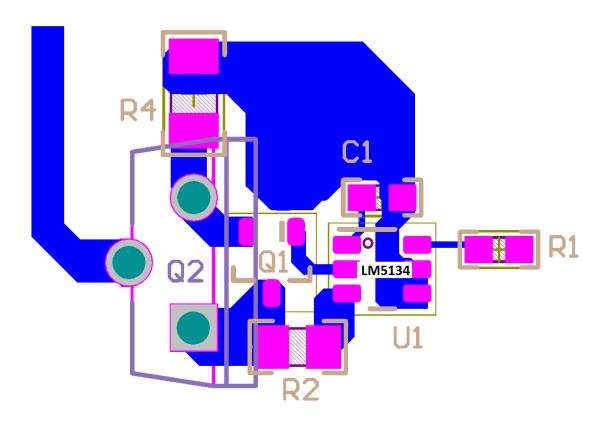


Figure 27. LM5134 Layout Example

10.3 Power Dissipation

It is important to keep the power consumption of the driver below the maximum power dissipation limit of the package at the operating temperature. The total power dissipation of the LM5134 is the sum of the gate charge losses and the losses in the driver due to the internal CMOS stages used to buffer the output as well as the power losses associated with the quiescent current.

The gate charge losses include the power MOSFET gate charge losses as well as the PILOT FET gate charge losses and can be calculated as follows:

$$P_{q} = (Q_{qq} + Q_{qp}) \times VDD \times F_{SW}$$
 (2)

Or

$$P_g = (C_o + C_p) \times VDD^2 \times F_{SW}$$

where

- F_{sw} is switching frequency
- Q_{ao} is the total input gate charge of the power MOSFET
- Q_{qp} is the total input gate charge of the PILOT MOSFET

 C_o and C_p are the load capacitance at OUT and PILOT outputs respectively. It should be noted that due to the use of an external turnoff switch, part of the gate charge losses are dissipated in the external turnoff switch. Therefore, the actual gate charge losses dissipated in the LM5134 is less than predicted by the above expressions. However, they are a good conservative design estimate.

The power dissipation associated with the internal circuit operation of the driver can be estimated with the characterization curves of the LM5134. For a given ambient temperature, the maximum allowable power losses of the IC can be defined using Equation 4.

$$P = (T_J - T_A) / \theta_{JA}$$

where

P is the total power dissipation of the driver

(4)

(3)

11 器件和文档支持

11.1 社区资源

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.2 商标

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

11.3 静电放电警告

这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损伤。

11.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 机械、封装和可订购信息

以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。

重要声明

德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据 JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售都遵循在订单确认时所提供的TI 销售条款与条件。

TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。

TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,客户应提供充分的设计与操作安全措施。

TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。

对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行 复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。

在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。

客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而对 TI 及其代理造成的任何损失。

在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。

TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。

只有那些 TI 特别注明属于军用等级或"增强型塑料"的 TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有法律和法规要求。

TI 己明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要求,TI不承担任何责任。

	产品		应用
数字音频	www.ti.com.cn/audio	通信与电信	www.ti.com.cn/telecom
放大器和线性器件	www.ti.com.cn/amplifiers	计算机及周边	www.ti.com.cn/computer
数据转换器	www.ti.com.cn/dataconverters	消费电子	www.ti.com/consumer-apps
DLP® 产品	www.dlp.com	能源	www.ti.com/energy
DSP - 数字信号处理器	www.ti.com.cn/dsp	工业应用	www.ti.com.cn/industrial
时钟和计时器	www.ti.com.cn/clockandtimers	医疗电子	www.ti.com.cn/medical
接口	www.ti.com.cn/interface	安防应用	www.ti.com.cn/security
逻辑	www.ti.com.cn/logic	汽车电子	www.ti.com.cn/automotive
电源管理	www.ti.com.cn/power	视频和影像	www.ti.com.cn/video
微控制器 (MCU)	www.ti.com.cn/microcontrollers		
RFID 系统	www.ti.com.cn/rfidsys		
OMAP应用处理器	www.ti.com/omap		
无线连通性	www.ti.com.cn/wirelessconnectivity	德州仪器在线技术支持社区	www.deyisupport.com

邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122 Copyright © 2016, 德州仪器半导体技术(上海)有限公司

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing		Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
LM5134AMF/NOPB	ACTIVE	SOT-23	DBV	6	1000	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 125	SK7A	Samples
LM5134AMFX/NOPB	ACTIVE	SOT-23	DBV	6	3000	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 125	SK7A	Samples
LM5134ASD/NOPB	ACTIVE	WSON	NGG	6	1000	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 125	5134A	Samples
LM5134ASDX/NOPB	ACTIVE	WSON	NGG	6	4500	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 125	5134A	Samples
LM5134BMF/NOPB	ACTIVE	SOT-23	DBV	6	1000	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 125	SK7B	Samples
LM5134BMFX/NOPB	ACTIVE	SOT-23	DBV	6	3000	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 125	SK7B	Samples
LM5134BSD/NOPB	ACTIVE	WSON	NGG	6	1000	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 125	5134B	Samples
LM5134BSDX/NOPB	ACTIVE	WSON	NGG	6	4500	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 125	5134B	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

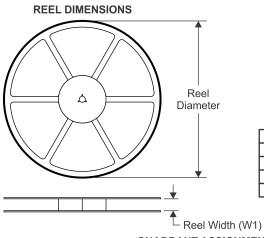
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

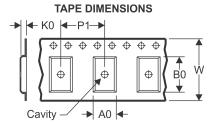
⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

PACKAGE OPTION ADDENDUM

10-Dec-2020

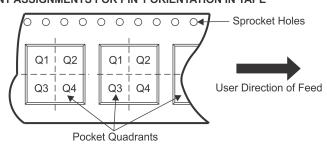
(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

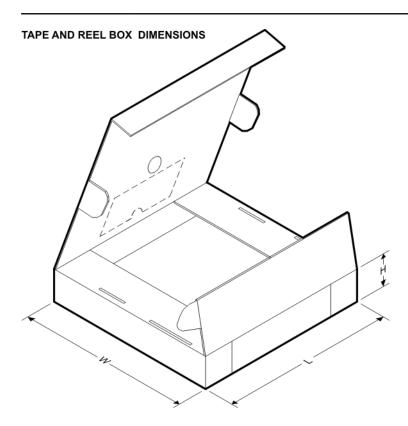

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 20-Dec-2016


TAPE AND REEL INFORMATION

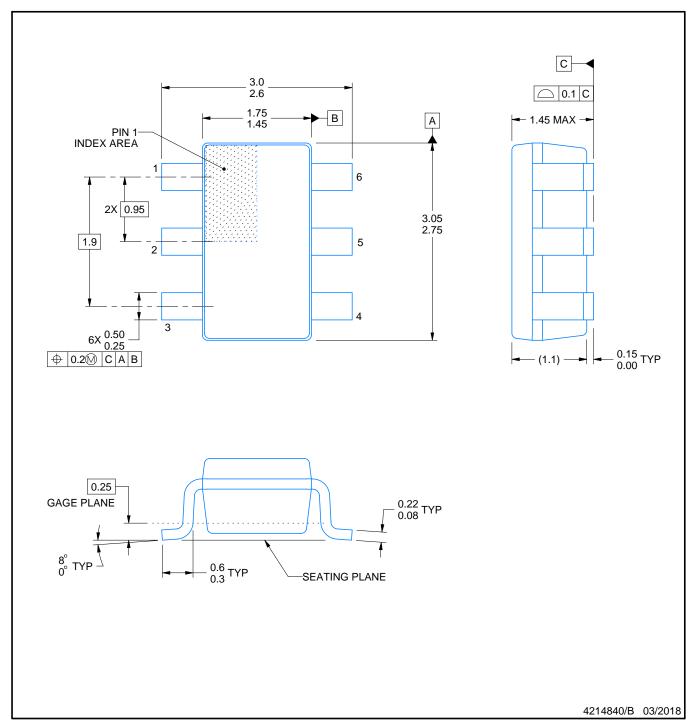
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM5134AMF/NOPB	SOT-23	DBV	6	1000	178.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
LM5134AMFX/NOPB	SOT-23	DBV	6	3000	178.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
LM5134ASD/NOPB	WSON	NGG	6	1000	178.0	12.4	3.3	3.3	1.0	8.0	12.0	Q1
LM5134ASDX/NOPB	WSON	NGG	6	4500	330.0	12.4	3.3	3.3	1.0	8.0	12.0	Q1
LM5134BMF/NOPB	SOT-23	DBV	6	1000	178.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
LM5134BMFX/NOPB	SOT-23	DBV	6	3000	178.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
LM5134BSD/NOPB	WSON	NGG	6	1000	178.0	12.4	3.3	3.3	1.0	8.0	12.0	Q1
LM5134BSDX/NOPB	WSON	NGG	6	4500	330.0	12.4	3.3	3.3	1.0	8.0	12.0	Q1

www.ti.com 20-Dec-2016



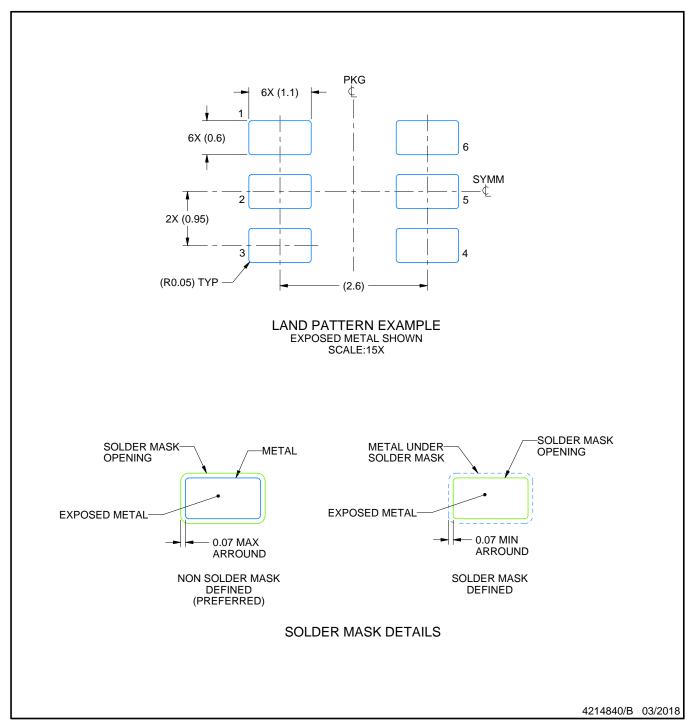
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM5134AMF/NOPB	SOT-23	DBV	6	1000	210.0	185.0	35.0
LM5134AMFX/NOPB	SOT-23	DBV	6	3000	210.0	185.0	35.0
LM5134ASD/NOPB	WSON	NGG	6	1000	210.0	185.0	35.0
LM5134ASDX/NOPB	WSON	NGG	6	4500	367.0	367.0	35.0
LM5134BMF/NOPB	SOT-23	DBV	6	1000	210.0	185.0	35.0
LM5134BMFX/NOPB	SOT-23	DBV	6	3000	210.0	185.0	35.0
LM5134BSD/NOPB	WSON	NGG	6	1000	210.0	185.0	35.0
LM5134BSDX/NOPB	WSON	NGG	6	4500	367.0	367.0	35.0

SMALL OUTLINE TRANSISTOR

NOTES:

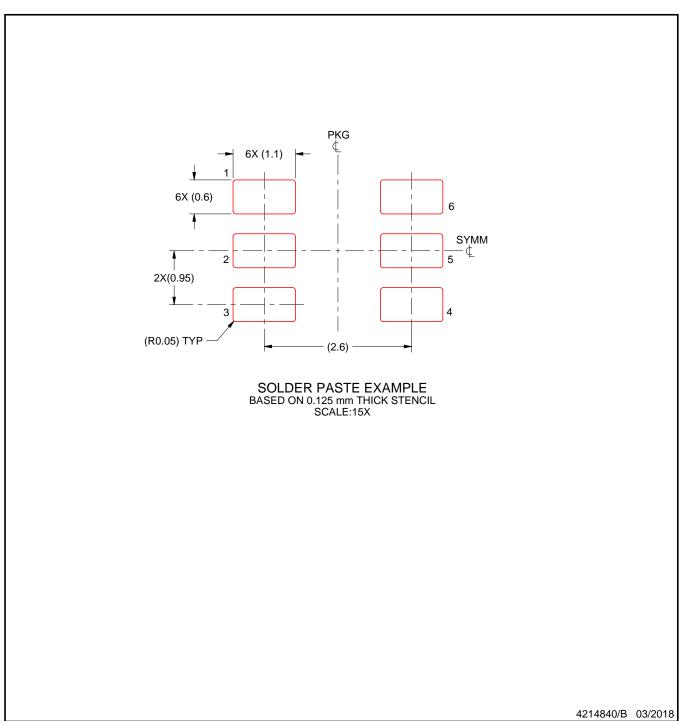
- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.


 2. This drawing is subject to change without notice.

 3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.

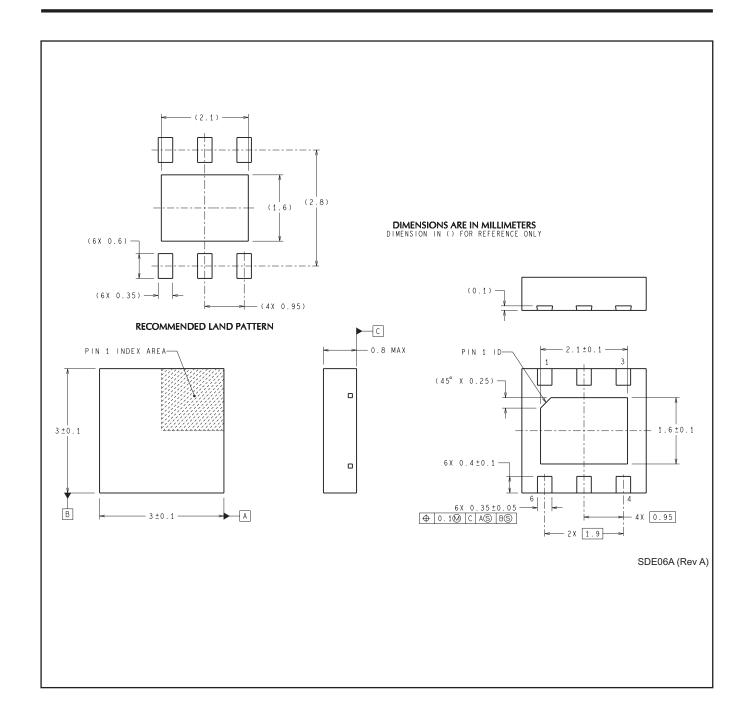
- 4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation. 5. Refernce JEDEC MO-178.

SMALL OUTLINE TRANSISTOR


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.


SMALL OUTLINE TRANSISTOR

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

重要声明和免责声明

TI 均以"原样"提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

所述资源可供专业开发人员应用TI产品进行设计使用。您将对以下行为独自承担全部责任: (1)针对您的应用选择合适的TI产品; (2)设计、验证并测试您的应用; (3)确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI对您使用所述资源的授权仅限于开发资源所涉及TI产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI及其代表造成的损害。

TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。

邮寄地址: 上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2020 德州仪器半导体技术(上海)有限公司