

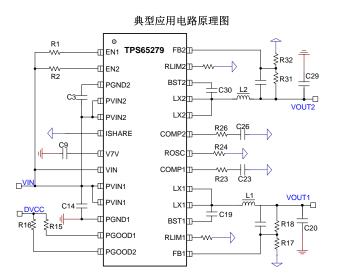
Sample & Buy

TPS65279

ZHCSBF7C - AUGUST 2013 - REVISED MAY 2015

TPS65279 具有电流均流功能的 4.5V 至 18V 输入、5A/5A 双路同步降压 转换器

Technical


Documents

1 特性

- 4.5V 至 18V 宽输入电压范围 •
- 针对输出电压转换的可编程转换率控制
- 降压转换器 1 和降压转换器 2 中高达 5A 最大持续 . 输出电流
- 可将降压转换器 1 和降压转换器 2 并联以传送高达 10A 的电流
- 脉冲跳跃模式,可实现轻负载条件下的高效率
- 可调开关频率为 200kHz 至 1.6MHz (由外部电阻设置)
- 针对每个降压转换器的专用使能和软启动
- 具有简单补偿电路的峰值电流模式控制
- 逐周期过流保护
- 180° 相移运行可减少输入电容量和电源引入感应噪 声
- 过热保护
- 可提供 32 引脚耐热增强型带散热片薄型小外形尺 寸封装 (HTSSOP) (DAP) 以及 36 引脚超薄四方扁 平无引线 (VQFN) 6mm × 6mm (RHH) 封装

2 应用范围

- 数字电视 (DTV)
- 电信和网络
- 负载点
- 机顶盒
- 平板电脑

3 说明

Tools &

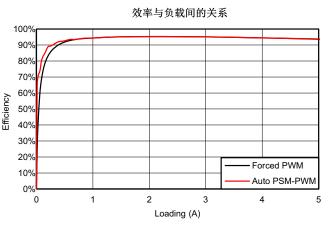
Software

TPS65279 是一款具有 4.5V 至 18V 宽工作输入电压 范围的单片双路同步降压转换器,它的电压范围曾包括 大多数中间总线关闭电压为 5V, 9V, 12V 或 15V 的 电源总线或电池。 这个具有恒定频率峰值电流模式控 制的转换器被设计用来简化它的应用,与此同时,能够 使设计人员根据目标应用来优化他们的使用方法。

Support &

Community

22


通过使用电流均流模式,将 ISHARE 引脚接至高电 平,可将 TPS65279 中的两个降压转换器并联,以传 送高达 10A 负载电流。采用电流均流的两相位运行减 少了系统滤波电容和电感,减轻了电磁干扰 (EMI) 并 改进了输出电压纹波和噪声。

TPS65279 特有一个专用使能引脚。一个独立软启动 引脚提供加电可编程性中的灵活性。 恒定频率峰值电 流模式简化了补偿并提供快速瞬态响应。 逐周期过流 保护和断续模式操作可在出现短路或过载故障条件时限 制 MOSFET 功耗。

器件信息(1)

部件号	封装	封装尺寸(标称值)
TPS65279	HTSSOP (32)	6.20mm × 11.00mm
1500219	VQFN (36)	6.00mm x 6.00mm

(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

1	特性	1
2	应用范围	1
3	说明	1
4	修订历史记录	2
5	说明(续)	3

 7.4
 Thermal Information
 5

 7.5
 Electrical Characteristics
 6

 7.6
 Typical Characteristics
 8

 Detailed Description
 11

8.1 Overview 11

Absolute Maximum Ratings 5

Recommended Operating Conditions 5

8.2	Functional Block Diagram	12

4 修订历史记录

6

7

8

2

7.1

7.3

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision B (December 2013) to Revision C

•	已添加 ESD 额定值表,特性描述部分,器件功能模式,应用和实施部分,电源相关建议部分,布局部分,器件和文档 支持部分以及机械、封装和可订购信息部分	. 1
•	Updated conditions for <i>Electrical Characteristics</i> from $T_J = 25^{\circ}C$ to $T_J = -40^{\circ}C$ to $125^{\circ}C$. 6
•	Updated UVLO minimum for falling V _{IN} to 3.4 from 3.5	. 6

Changes from Revision A (December 2013) to Revision B

•	Changed I _{LIMIT2} test conditions	6
•	Changed Functional Block Diagram	12
•	Changed Current Sharing Operation section	15
•	Changed Loop Compensation section	20

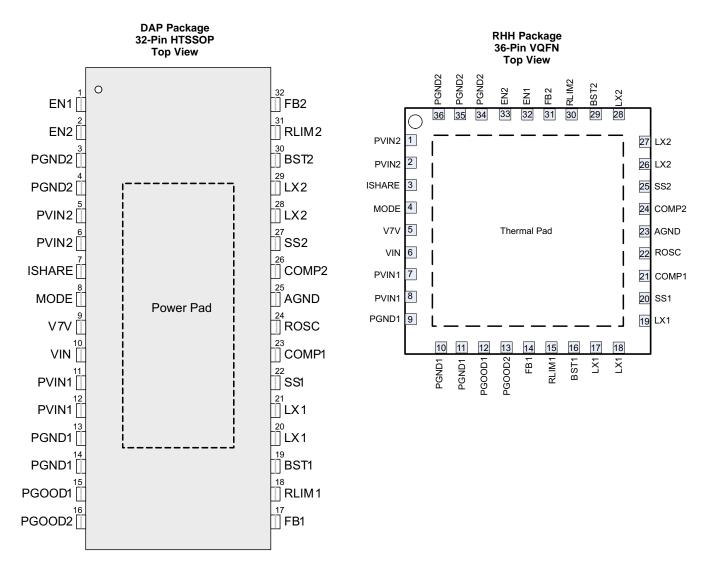
	8.4	Device Functional Modes	15
9	Appl	lication and Implementation	16
		Application Information	
	9.2	Typical Applications	16
10	Pow	er Supply Recommendations	26
11	Layo	out	27
	11.1	Layout Guidelines	27
	11.2	Layout Example	27
12	器件	和文档支持	28
	12.1	社区资源	28
	12.2	商标	28
	12.3	静电放电警告	28
	12.4	术语表	28
13	机械	、封装和可订购信息	28

8.3 Feature Description..... 12

www.ti.com.cn

Page

Page



5 说明(续)

低侧反向过流保护还能够防止过多灌电流损坏转换器。 TPS65279 还特有一个由 MODE 引脚配置控制的轻负载脉 冲跳跃模式 (PSM)。

TPS65279 采用 32 引脚耐热增强型 HTSSOP (DAP) 封装和 36 引脚 6mm × 6mm VQFN (RHH) 封装。

6 Pin Configuration and Functions

TPS65279 ZHCSBF7C - AUGUST 2013 - REVISED MAY 2015

www.ti.com.cn

NSTRUMENTS

Texas

Pin Functions

	PIN				
NAME	HTSSOP	VQFN	DESCRIPTION		
EN1, EN2	1, 2	32, 33	Enable pin. Adjust the input under-voltage lockout with two resistors.		
PGND2	3, 4	34, 35, 36	Power ground of buck2, place the input capacitor's ground pin as close as possible to this pin.		
PVIN2	5, 6	1, 2	Power input. Input power supply to the power switches of the power converter 2.		
ISHARE	7	3	Logic pin to configure current sharing mode, tie to high to parallel two buck converters, in current sharing mode, buck1 will be used; tie to low to run in separate mode.		
MODE	8	4	Connecting this pin to ground, the buck converter forces a continuous current mode (CCM) operation. Connecting this pin to V7V, the buck converter automatically operates in pulse skipping mode (PSM) at light load condition to save the power.		
V7V	9	5	ernal low-drop linear regulator (LDO) output to power internal driver and control circuits. couple this pin to power ground with a minimum IF ceramic capacitor. Output regulates to typical 6.3 V for optimal conduction on-resistances internal power MOSFETs. In PCB design, the power ground and analog ground should have e-point common connection at the (-) terminal of V7V bypass capacitor. If VIN is lower than 3 V, V7V will be slightly lower than VIN.		
VIN	10	6	Power supply of the internal LDO and controllers		
PVIN1	11, 12	7, 8	Power input. Input power supply to the power switches of the power converter 1.		
PGND1	13, 14	9, 10, 11	Power ground of buck1, place the input capacitor's ground pin as close as possible to this pin.		
PGOOD1	15	12	Power Good pin for buck1, open drain output, when output is within range, output high impedance, a 100-k Ω resistor is recommended to connect to this pin.		
PGOOD2	16	13	Power Good pin for buck2, open drain output, when output is within range, output high impedance, a 100-k Ω resistor is recommended to connect to this pin.		
FB1	17	14	eedback sensing pin for buck1 output voltage. Connect this pin to the resistor divider of buck1 utput. The feedback reference voltage is $0.6 \text{ V} \pm 1\%$.		
RLIM1	18	15	Current limit threshold set pin for buck1, connect a resistor between this pin to GND to set the OCP.		
BST1	19	16	Add a bootstrap capacitor between BST1 and LX1. The voltage on this capacitor carries the gate drive voltage for the high-side MOSFET.		
LX1	20, 21	17, 18, 19	Switching node of buck1		
SS1	22, 27	20, 25	Soft-start and voltage tracking in buck1. An external capacitor connected to this pin sets the internal voltage reference rise time. Since the voltage on this pin overrides the internal reference, it can be used for tracking and sequencing. In current sharing application, this pin serves as the soft-start pin.		
COMP1	23	21	Error amplifier output and loop compensation pin for buck1. Connect frequency compensation to this pin; In current sharing application, this pin serves as the compensation pin.		
ROSC	24	22	Oscillator frequency programmable pin. Connect an external resistor to set the switching frequency. When connected to an external clock, the internal oscillator synchronizes to the external clock.		
AGND	25	23	Analog ground of the controllers		
COMP2	26	24	Error amplifier output and loop compensation pin for buck2. Connect frequency compensation to this pin. In current sharing application, float this pin.		
SS2	27	25	Soft-start and voltage tracking in buck2. An external capacitor connected to this pin sets the internal voltage reference rise time. Since the voltage on this pin overrides the internal reference, it can be used for tracking and power sequencing. In current sharing application, float this pin.		
LX2	28, 29	26, 27, 28	Switching nodes		
BST2	30	29	Add a bootstrap capacitor between BST2 and LX2. The voltage on this capacitor carries the gate drive voltage for the high-side MOSFET of buck2.		
RLIM2	31	30	Current limit threshold set pin for buck2, connect a resistor between this pin to GND to set the OCP.		
FB2	32	31	Feedback sensing pin for buck2 output voltage. Connect this pin to the resistor divider of buck2 output. The feedback reference voltage is 0.6 V \pm 1%. In current sharing mode, connect this pin to ground.		
Exposed Thermal Pad	33	37	Exposed thermal pad of the package. Connect to the power ground. Always solder thermal pad to the board, and have as many vias as possible on the PCB to enhance power dissipation. There is no electric signal down bonded to the thermal pad inside the IC package.		

TPS65279 ZHCSBF7C – AUGUST 2013 – REVISED MAY 2015

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
	Voltage at VIN, PVIN1, PVIN2	-0.3	20	V
	Voltage at LX1, LX2 (maximum withstand voltage transient < 20 ns)	-4.5	23	V
	Voltage at BST1, BST2, referenced to LX1, LX2 pin	-0.3	7	V
	Voltage at V7V, EN1, EN2, RLIM1, RLIM2, PGOOD1, PGOOD2, MODE, ISHARE, ROSC	-0.3	7	V
	Voltage at SS1, SS2, FB1, FB2, COMP1, COMP2	-0.3	3.6	V
	Voltage at AGND, PGND1, PGND2	-0.3	0.3	V
TJ	Operating virtual junction temperature	-40	150	°C
T _{stg}	Storage temperature	-55	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

				VALUE	UNIT
,		Electrostatic	Human body model (HBM)	2000	V
<u>'</u>	V(ESD)	discharge	Charge device model (CDM)	1000	v

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V _{IN}	Supply input voltage range	4.5	18	V
I _{OUT1} , I _{OUT2}	Load current	0	5	А
V _{out}	Output voltage	0.6	9	V
EN	Enable voltage	0	6	V
TJ	Operating junction temperature	-40	125	°C

7.4 Thermal Information

	Junction-to-board thermal resistance196°C/WJunction-to-top characterization parameter0.50.2°C/WJunction-to-board characterization parameter18.96°C/W			
THERMAL METRIC ⁽¹⁾ DAP (HTSSOP)RHH (VQFN) $R_{\theta,JA}$ Junction-to-ambient thermal resistance32 PINS36 PINS $R_{\theta,JC(top)}$ Junction-to-case (top) thermal resistance17.718.8 $R_{\theta,JB}$ Junction-to-board thermal resistance196 ψ_{JT} Junction-to-top characterization parameter0.50.2 ψ_{JB} Junction-to-board characterization parameter18.96	UNIT			
		32 PINS	36 PINS	
$R_{ extsf{ heta}JA}$	Junction-to-ambient thermal resistance	35	30.8	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	17.7	18.8	°C/W
$R_{ heta JB}$	Junction-to-board thermal resistance	19	6	°C/W
ΨJT	Junction-to-top characterization parameter	0.5	0.2	°C/W
Ψ _{JB}	Junction-to-board characterization parameter	18.9	6	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	1.3	0.7	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

TEXAS INSTRUMENTS

www.ti.com.cn

7.5 Electrical Characteristics

 $T_{\rm J}=-40^{\circ}C$ to 125°C, $V_{\rm IN}$ = 12 V (unless otherwise noted)

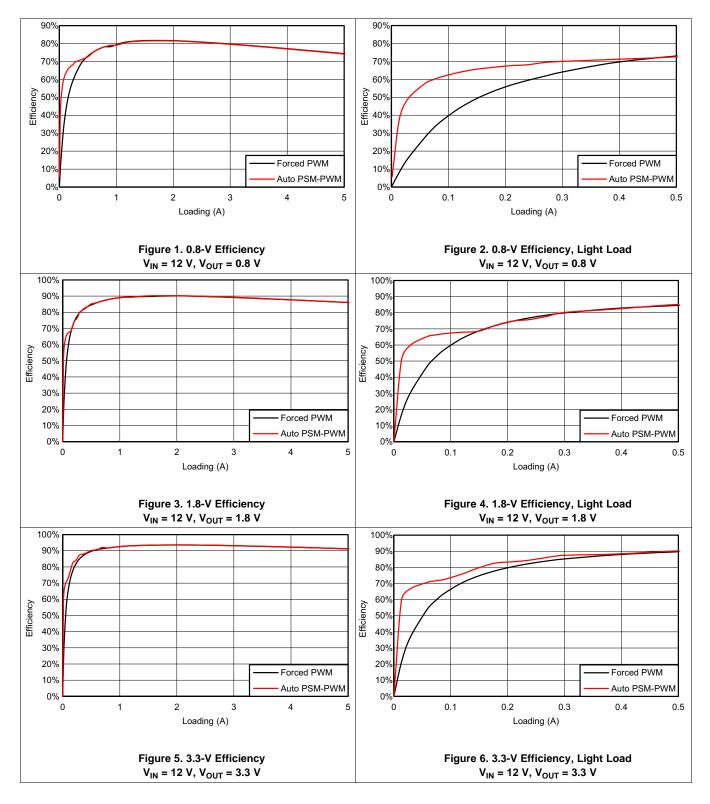
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
INPUT SUPP	LY				L. L	
V _{IN}	Input voltage range	VIN1 and VIN2	4.5		18	V
IDD _{SDN}	Shutdown supply current	EN1 = EN2 = low		10		μA
IDD _{Q_NSW}	Switching quiescent current with no load at DCDC output	EN1 = EN2 = 3.3 V With power skip mode, without bucks switching		1.2		mA
IDD _{Q_SW}	Switching quiescent current with no load at DCDC output, Buck switching	EN1 = EN2 = 3.3 V With bucks switching		10		mA
		Rising V _{IN}		4.25	4.50	
UVLO	V _{IN} undervoltage lockout	Falling V _{IN}	3.4	3.75		V
		Hysteresis		0.5		
V _{7V}	6.3 V LDO	V_{7V} load current = 0 A	6.10	6.3	6.5	V
IOCP V7V	Current limit of V7V LDO			200		mA
ENABLE						
V _{ENR}	Enable threshold	Rising		1.21	1.3	V
V _{ENF}	Enable threshold	Falling	1.0	1.17		V
I _{ENR}	Enable Input current	EN = 1 V		3		μA
I _{ENF}	Enable hysteresis current	EN = 1.5 V		3		μA
OSCILLATOR	र					
_	Switching frequency		200		1600	
F _{SW}		$R_{OSC} = 100 \text{ k}\Omega (1\%)$	340	400	460	kHz
t _{SYNC w}	Clock sync minimum pulse width			20		ns
V _{SYNC_HI}	Clock sync high threshold				2	V
V _{SYNC_LO}	Clock sync low threshold		0.8			V
V _{SYNC_D}	Clock falling edge to LX rising edge delay			66		ns
F _{SYNC}	Clock sync frequency range		200		1600	kHz
	CK 2 CONVERTERS		L			
V _{ref(min)}	Voltage reference	0 A < I _{OUT1} < 6 A, 0 A < I _{OUT2} < 3.5 A	0.594	0.6	0.606	V
V _{LINEREG}	Line regulation-DC	$I_{OUT} = 2 A$		0.5		%/V
V _{LOADREG}	Load regulation-DC	I _{OUT} = (10-90%) x I _{OUT_max}		0.5		%/A
G _{m_EA}	Error amplifier trans-conductance	-2 μA < I _{COMP} < 2 μA		1350		μS
G _{m_SRC}	COMP voltage to inductor current Gm	I _{LX} = 0.5 A		10		A/V
I _{SSx}	Soft-start pin charging current			6		μA
I _{LIMIT1}	Buck 1 peak inductor current limit	R _{LIM1} = 60.4 kΩ		7.3		A
I _{LIMIT2}	Buck 2 peak inductor current limit	$R_{LIM2} = 60.4 \text{ k}\Omega$		7.3		А
ILIMITLSx	Low side sinking current limit			-2.6		А
R _{dsonx_HS}	On resistance of high side FET	V7V = 6.3 V		31		mΩ
R _{dsonx_LS}	On resistance of low side FET	V _{IN} = 12 V		23		mΩ
T _{minon}	Minimum on time			94		ns
V _{bootUV}	Boot-LX UVLO			2.1	3	V
Thiccupwait	Hiccup wait time			512		cycles
T _{hiccup_re}	Hiccup time before re-start			16384		cycles

Electrical Characteristics (continued)

 $T_{\rm J}$ = –40°C to 125°C, $V_{\rm IN}$ = 12 V (unless otherwise noted)

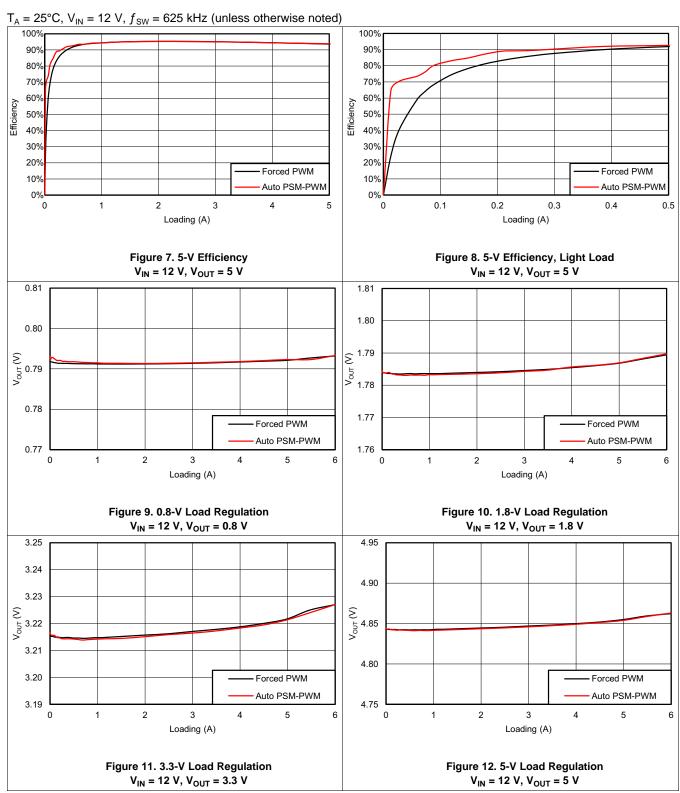
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
PGOOD						
V _{PGOOD}		FB rising to PGOOD high		94%		
	PGOOD trip levels	FB falling to PGOOD low		92.5%		
	FGOOD tilp levels	FB rising to PGOOD low	107.5%	107.5%		
		FB falliong to PGOOD high	105.5%			
THERMAL S	SHUTDOWN					
T _{TRIP}	Thermal protection trip point	Rising temperature		160		°C
T _{HYST}	Thermal protection hysteresis			20		°C

TEXAS INSTRUMENTS


www.ti.com.cn

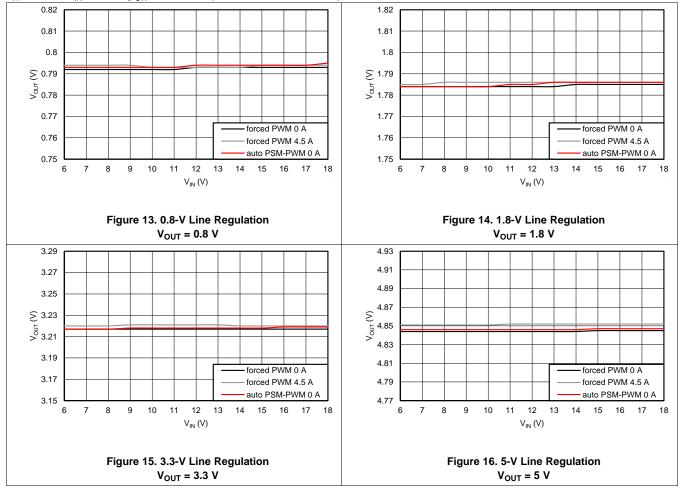
TPS65279

ZHCSBF7C - AUGUST 2013-REVISED MAY 2015


7.6 Typical Characteristics

 $T_A = 25^{\circ}C$, $V_{IN} = 12$ V, $f_{SW} = 625$ kHz (unless otherwise noted)

Typical Characteristics (continued)


TPS65279 ZHCSBF7C – AUGUST 2013– REVISED MAY 2015

www.ti.com.cn

Typical Characteristics (continued)

 $T_A = 25^{\circ}C$, $V_{IN} = 12$ V, $f_{SW} = 625$ kHz (unless otherwise noted)

8 Detailed Description

8.1 Overview

TPS65279 is a dual 5-A/5-A output current, synchronous step-down (buck) converter with integrated N-channel MOSFETs. A wide 4.5-V to 18-V input supply range to buck encompasses most intermediate bus voltages operating off 9-V, 12-V or 15-V power bus.

TPS65279 implements a constant frequency, peak current mode control which simplifies external frequency compensation. The wide switching frequency of 200 kHz to 1600 kHz allows for efficiency and size optimization when selecting the output filter components. The switching frequency can be adjusted with an external resistor to ground on the ROSC pin. The TPS65279 also has an internal phase lock loop (PLL) controlled by the ROSC pin that can be used to synchronize the switching cycle to the falling edge of an external system clock. 180° out-of-phase operation between two channels reduces input filter and power supply induced noise.

TPS65279 has been designed for safe monotonic startup into prebiased loads. The default start up is typically 4.5 V. The EN pin has an internal pullup current source that can be used to adjust the input voltage under voltage lockout (UVLO) with two external resistors. In addition, the EN pin can be floating for automatically starting up the TPS65279 with the internal pullup current.

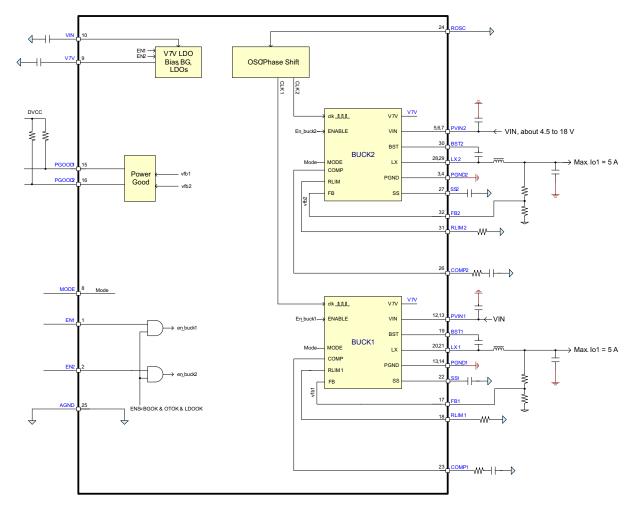
The integrated MOSFETs of each channel allow for high efficiency power supply designs with continuous output currents up to 5 A. The MOSFETs have been sized to optimize efficiency for lower duty cycle applications.

The TPS65279 reduces the external component count by integrating the boot recharge circuit. The bias voltage for the integrated high-side MOSFET is supplied by a capacitor between the BOOT and LX pins. The boot capacitor voltage is monitored by a BOOT to LX UVLO (BOOT-LX UVLO) circuit allowing LX pin to be pulled low to recharge the boot capacitor. The TPS65279 can operate at 100% duty cycle as long as the boot capacitor voltage is higher than the preset BOOT-LX UVLO threshold which is typically 2.1 V.

The TPS65279 has a power good comparator with hysteresis which monitors the output voltage through internal feedback voltage.

The SS (soft start/tracking) pin is used to minimize inrush current or provide power supply sequencing during power up. A small value capacitor or resistor divider should be coupled to the pin for soft start or critical power supply sequencing requirements.

The TPS65279 is protected from output overvoltage, overload, and thermal fault conditions. The TPS65279 minimizes excessive output overvoltage transients by taking advantage of the power good comparator. When the overvoltage comparator is activated, the high-side MOSFET is turned off and prevented from turning on until the internal feedback voltage is lower than 107.5% of the 0.6-V reference voltage. The TPS65279 implements both high-side MOSFET overload protection and bidirectional low-side MOSFET overload protections which help control the inductor current and avoid current runaway. If the over current condition has lasted for more than the hiccup wait time, the TPS65279 will shut down and re-start after the hiccup time. The TPS65279 also shuts down if the junction temperature is higher than thermal shutdown trip point. When the junction temperature drops 20°C typically below the thermal shutdown trip point, the built-in thermal shutdown hiccup timer is triggered. The TPS65279 will be restarted under control of the soft start circuit automatically after the thermal shutdown hiccup time is over.


Furthermore, if the over-current condition has lasted for more than the hiccup wait time which is programmed for 512 switching cycles, the TPS65279 will shut down itself and restart after the hiccup time which is set for 16384 cycles. The hiccup mode helps to reduce the device power dissipation under severe over-current conditions.

The TPS65279 operates at any load conditions unless the COMP pin voltage drops below the COMP pin start switching threshold which is typically 0.25 V.

When PSM mode operation is enabled, the TPS65279 monitors the peak switch current of the high-side MOSFET. Once the peak switch current is lower than typically 1 A, the device stops switching to boost the efficiency until the peak switch current is higher than typically 1 A again.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Enable and Adjusting Undervoltage Lockout (UVLO)

The EN pin provides electrical on/off control of the device. Once the EN pin voltage exceeds the threshold voltage, the device starts operation. If the EN pin voltage is pulled below the threshold voltage, the regulator stops switching and enters low lq state.

The EN pin has an internal pullup current source, allowing the user to float the EN pin for enabling the device. If an application requires controlling the EN pin, use open drain or open collector output logic to interface with the pin.

The device implements internal UVLO circuitry on the VIN pin. The device is disabled when the VIN pin voltage falls below the internal VIN UVLO threshold. The internal VIN UVLO threshold has a hysteresis of 500 mV.

8.3.2 Adjustable Switching Frequency and Synchronization

The ROSC pin can be used to set the switching frequency of the device in two mode. The resistor mode is to connect a resistor between ROSC pin and GND. The switching frequency of the device is adjustable from 200 kHz to 1600 kHz. The other mode called synchronization mode is to connect an external clock signal directly to the ROSC pin. The device is synchronized to the external clock frequency with PLL.

Synchronization mode overrides the resistor mode. The device is able to detect the proper mode automatically and switch from synchronization mode to resistor mode.

Feature Description (continued)

8.3.2.1 Synchronization

An internal phase locked loop (PLL) has been implemented to allow synchronization between 200 kHz and 1600 kHz, and to easily switch from Resistor mode to Synchronization mode.

To implement the synchronization feature, connect a square wave clock signal to the ROSC pin with a duty cycle between 20% to 80%. The clock signal amplitude must transition lower than 0.8 V and higher than 2 V. The start of the switching cycle is synchronized to the falling edge of ROSC pin.

In applications where both Resistor mode and Synchronization mode are needed, the device can be configured as shown in Figure 17. Before the external clock is present, the device works in Resistor mode and the switching frequency is set by ROSC resistor. When the external clock is present, the Synchronization mode overrides the Resistor mode. The first time the ROSC pin is pulled above the ROSC high threshold (2 V), the device switches from the Resistor mode to the Synchronization mode and the ROSC pin becomes high impedance as the PLL starts to lock onto the frequency of the external clock. It is not recommended to switch from the Synchronization mode back to the Resistor mode because the internal switching frequency drops to 100 kHz first before returning to the switching frequency set by ROSC resistor.

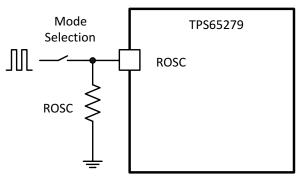


Figure 17. Resistor Mode and Synchronization Mode

8.3.3 Soft-Start Time

The start-up of buck output is controlled by the voltage on the respective SS pin. When the voltage on the SS pin is less than the internal 0.6-V reference, the TPS65279 regulates the internal feedback voltage to the voltage on the SS pin instead of 0.6 V. The SS pin can be used to program an external soft-start function or to allow output of buck to track another supply during start-up. The device has an internal pullup current source of 6 μ A that charges an external soft-start capacitor to provide a linear ramping voltage at SS pin. The TPS65279 regulates the internal feedback voltage according to the voltage on the SS pin, allowing VOUT to rise smoothly from 0 V to its final regulated voltage. The total soft-start time will be calculated approximately:

$$t_{SS}(ms) = Css(nF) \times \left(\frac{0.6 V}{6 \mu A}\right)$$

(1)

8.3.4 Out-of-Phase Operation

In order to reduce input ripple current, Buck 1 and Buck 2 operate 180° out-of-phase. This enables the system having less input ripple, then to lower component cost, save board space and reduce EMI.

8.3.5 Output Overvoltage Protection (OVP)

The device incorporates an output overvoltage protection (OVP) circuit to minimize output voltage overshoot. For example, when the power supply output is overloaded the error amplifier compares the actual output voltage to the internal reference voltage. If the FB pin voltage is lower than the internal reference voltage for a considerable time, the output of the error amplifier demands maximum output current. Once the condition is removed, the regulator output rises and the error amplifier output transitions to the steady state voltage. In some applications

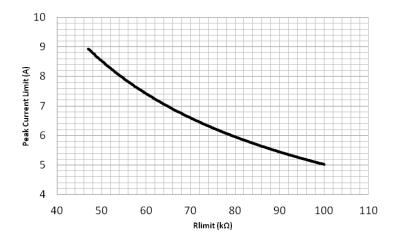
Feature Description (continued)

with small output capacitance, the power supply output voltage can respond faster than the error amplifier. This leads to the possibility of an output overshoot. The OVP feature minimizes the overshoot by comparing the FB pin voltage to the OVP threshold. If the FB pin voltage is greater than the OVP threshold the high-side MOSFET is turned off preventing current from flowing to the output and minimizing output overshoot. When the FB voltage drops lower than the OVP threshold, the high-side MOSFET is allowed to turn on at the next clock cycle.

8.3.6 Bootstrap Voltage (BOOT) and Low Dropout Operation

The device has an integrated boot regulator, and requires a small ceramic capacitor between the BOOT and LX pins to provide the gate drive voltage for the high-side MOSFET. The boot capacitor is charged when the BOOT pin voltage is less than VIN and BOOT-LX voltage is below regulation. The value of this ceramic capacitor should be 0.1 μ F. A ceramic capacitor with an X7R or X5R grade dielectric with a voltage rating of 10 V or higher is recommended because of the stable characteristics over temperature and voltage.

To improve drop out, the device is designed to operate at 100% duty cycle as long as the BOOT to LX pin voltage is greater than the BOOT-LX UVLO threshold which is typically 2.1 V. When the voltage between BOOT and LX drops below the BOOT-LX UVLO threshold the high-side MOSFET is turned off and the low-side MOSFET is turned on allowing the boot capacitor to be recharged. In applications with split input voltage rails, 100% duty cycle operation can be achieved as long as (VIN – PVIN) > 4 V.


8.3.7 Overcurrent Protection

The device is protected from over current conditions by cycle-by-cycle current limiting on both the high-side MOSFET and the low-side MOSFET.

8.3.7.1 High-Side MOSFET Overcurrent Protection

The device implements current mode control which uses the COMP pin voltage to control the turn off of the highside MOSFET and the turn on of the low-side MOSFET on a cycle by cycle basis. Each cycle the switch current and the current reference generated by the COMP pin voltage are compared, when the peak switch current intersects the current reference the high-side switch is turned off.

TPS65279 features adjustable overcurrent protection trip point. The peak current limit can be set by external resistors connected between pin RLIM1/2 to ground. By setting lower current limit, lower current rating inductor can be used to reduce system cost.

llim (A) = 168.98 × Rlimit (k Ω)^{-0.763}

(2)

Feature Description (continued)

8.3.7.2 Low-Side MOSFET Overcurrent Protection

While the low-side MOSFET is turned on its conduction current is monitored by the internal circuitry. During normal operation the low-side MOSFET sources current to the load. At the end of every clock cycle, the low-side MOSFET sourcing current is compared to the internally set low-side sourcing current limit. If the low-side sourcing current is exceeded, the high-side MOSFET is not turned on and the low-side MOSFET stays on for the next cycle. The high-side MOSFET is turned on again when the low-side current is below the low-side sourcing current limit at the start of a cycle.

The low-side MOSFET may also sink current from the load. If the low-side sinking current limit is exceeded the low-side MOSFET is turned off immediately for the rest of that clock cycle. In this scenario both MOSFETs are off until the start of the next cycle.

Furthermore, if an output overload condition (as measured by the COMP pin voltage) has lasted for more than the hiccup wait time which is programmed for 512 switching cycles, the device will shut down itself and restart after the hiccup time of 16384 cycles. The hiccup mode helps to reduce the device power dissipation under severe overcurrent conditions. When one channel is in OCP, the other channel is not impacted and remains independent.

8.3.8 Current Sharing Operation

As TPS65279 uses peak current mode control method, the two buck converters can be paralleled together to provide large current. Paralleling two bucks provides some advantages over single buck operation, such as smaller input and output ripple, faster response in load transient, and so forth. The converters will work in current sharing mode by connecting the iShare pin to high. Once in current mode, signal pins in Buck 2 are not active, for example, FB2, COMP2, SS2, these pins will be neglected. Connecting FB2 to GND and floating COMP2, SS2, PGOOD2 are recommended.

8.3.9 Thermal Shutdown

The internal thermal shutdown circuitry forces the device to stop switching if the junction temperature exceeds 160°C typically. Once the junction temperature drops below 140°C typically, the internal thermal hiccup timer will start to count. The device reinitiates the power up sequence after the built-in thermal shutdown hiccup time (16384 cycles) is over.

8.4 Device Functional Modes

8.4.1 CCM Operation Mode

When the VIN/PVINx are above UVLO threshold and ENx are above the threshold, two switchers operate in continuous current mode(CCM) when MODE pin connects to GND. In CCM, the converters work in peak current mode for easy loop compensation and cycle-by-cycle high side MOSFET current limit.

8.4.2 PSM Operation Mode

When connect MODE pin to V7V, PSM mode is enabled. The devices are designed to operate in high-efficiency PSM under light load conditions. Pulse skipping is initiated when the switch current falls to 0 A. During pulse skipping, the low-side FET is turned off when the switch current falls to 0 A. The switching node (LX) waveform takes on the characteristics of DCM operation and the apparent switching frequency decreases.

8.4.3 Current Sharing Mode

When ISHARE pin connects to high, SW1/SW2 pair output are shared, the responding pairs current sharing mode is enabled and the two buck converters are paralleled together to provide large current. For the detail configuration, see current sharing application schematics.

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The devices are step-down DC-DC converters. They are typically used to convert a higher dc voltage to a lower dc voltage with a maximum available output current of 5/5 A. The following design procedure can be used to select component values for the TPS65279. Alternately, the WEBENCH[®] software may be used to generate a complete design. The WEBENCH software uses an iterative design procedure and accesses a comprehensive database of components when generating a design. This section presents a simplified discussion of the design process.

9.2 Typical Applications

9.2.1 Dual Buck Operation Mode Application

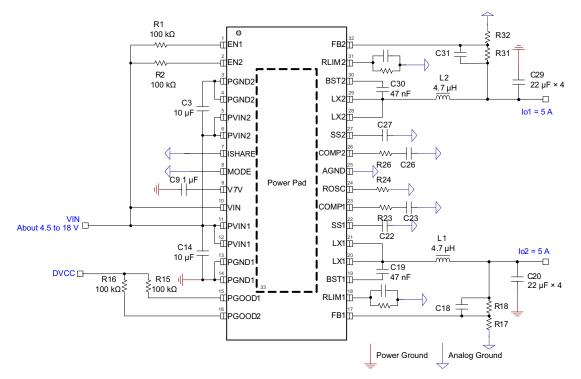


Figure 19. Dual Mode Operation to Deliver 5 A at Buck1 and 5 A at Buck2

Typical Applications (continued)

9.2.1.1 Design Requirements

For this design example, use the following in Table 1 as the input parameters.

PARAMETER	EXAMPLE VALUE
Input voltage range	4.5 to 18 V
Output voltage	1.2 V/1.8 V
Transient response, 1.5-A load step	$\Delta Vout = \pm 5\%$
Input ripple voltage	400 mV
Output ripple voltage	30 mV
Output current rating	5 A
Operating frequency	600 kHz

Table 1. Design Parameters

9.2.1.2 Detailed Design Procedure

9.2.1.2.1 Adjusting the Output Voltage

The output voltage is set with a resistor divider from the output node (VOUT) to the FB pin. TI recommends to use 1% tolerance or better divider resistors.

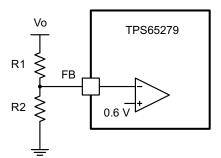


Figure 20. Voltage Divider Circuit

$$R2 = R1 \times \left(\frac{0.6 \text{ V}}{\text{V}_{\text{OUT}} - 0.6 \text{ V}}\right)$$

(3)

Start with a 40.2-k Ω for R1 and use Equation 3 to calculate R2. To improve efficiency at light loads consider using larger value resistors. If the values are too high, the regulator is more susceptible to noise and voltage errors from the FB input current are noticeable.

The minimum output voltage and maximum output voltage can be limited by the minimum on time of the highside MOSFET and bootstrap voltage (BOOT-LX voltage) respectively. See *Bootstrap Voltage (BOOT) and Low Dropout Operation* for more information.

9.2.1.2.2 Adjusting UVLO

If an application requires either a higher UVLO threshold on the VIN pin or a secondary UVLO on the PVIN, in split rail applications, then the EN pin can be configured as shown in Figure 21.

When using the external UVLO function, TI recommends to set the hysteresis to >500 mV.

The EN pin has a small pullup current I_P which sets the default state of the pin to enable when no external components are connected. The pullup current is also used to control the voltage hysteresis for the UVLO function since it increases by Ih once the EN pin crosses the enable threshold. The UVLO thresholds can be calculated using Equation 4 and Equation 5.

(5)

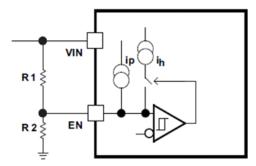


Figure 21. Adjustable VIN UVLO

$$\begin{split} R_{1} &= \frac{V_{START}(\frac{V_{ENFALLING}}{V_{ENRISING}}) - V_{STOP}}{I_{p}(1 - \frac{V_{ENFALLING}}{V_{ENRISING}}) + I_{h}} \\ R_{2} &= \frac{R_{1} \times V_{ENFALLING}}{V_{STOP} - V_{ENFALLING} + R_{1}(I_{h} + I_{p})} \end{split}$$
(4)
where

 $I_h = 3 \ \mu A$

 $I_P = 3 \mu A$

V_{ENRISING} = 1.21 V

 $V_{\text{ENFALLING}} = 1.17 \text{ V}$

9.2.1.2.3 Adjustable Switching Frequency (Resistor Mode)

To determine the ROSC resistance for a given switching frequency, use Equation 6 or the curve in Figure 22. To reduce the solution size one would set the switching frequency as high as possible, but tradeoffs of the supply efficiency and minimum controllable on time should be considered.

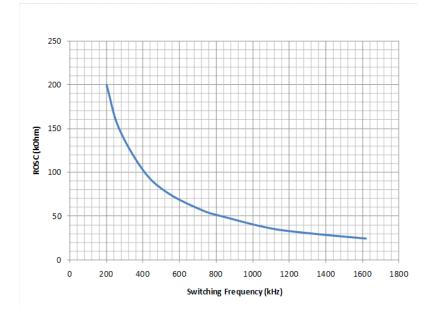


Figure 22. ROSC vs Switching Frequency

(6)

$$R_{osc}(k\Omega) = 45580 \times f_{sw}^{-1.019}(kHz)$$

9.2.1.2.4 Output Inductor Selection

To calculate the value of the output inductor, use Equation 7. LIR is a coefficient that represents the amount of inductor ripple current relative to the maximum output current. The inductor ripple current is filtered by the output capacitor. Therefore, choosing high inductor ripple currents impact the selection of the output capacitor since the output capacitor must have a ripple current rating equal to or greater than the inductor ripple current. In general, the inductor ripple value is at the discretion of the designer; however, LIR is normally from 0.1 to 0.3 for the majority of applications.

$$L = \frac{V_{\text{inmax}} - V_{\text{out}}}{I_{\text{o}} \times \text{LIR}} \times \frac{V_{\text{out}}}{V_{\text{inmax}} \times f_{\text{sw}}}$$
(7)

For the output filter inductor, it is important that the RMS current and saturation current ratings not be exceeded. The RMS and peak inductor current can be found from Equation 9 and Equation 10.

$$I_{ripple} = \frac{V_{inmax} - V_{out}}{L} \times \frac{V_{out}}{V_{inmax} \times f_{sw}}$$

$$I_{Lrms} = \sqrt{I_{O}^{2} + \frac{(\frac{V_{out} \times (V_{inmax} - V_{out})}{V_{inmax} \times L \times f_{sw}})^{2}}{12}}$$
(8)
$$I_{Lrms} = I_{out} + \frac{I_{ripple}}{12}$$
(9)

$$L_{\text{peak}} = \int_{0}^{1} \int_{0}^{1} dt \qquad (10)$$

The current flowing through the inductor is the inductor ripple current plus the output current. During power up, faults or transient load conditions, the inductor current can increase above the calculated peak inductor current level calculated above. In transient conditions, the inductor current can increase up to the switch current limit of the device. For this reason, the most conservative approach is to specify an inductor with a saturation current rating equal to or greater than the switch current limit rather than the peak inductor current.

9.2.1.2.5 Output Capacitor Selection

There are three primary considerations for selecting the value of the output capacitor. The output capacitor determines the modulator pole, the output voltage ripple, and how the regulator responds to a large change in load current. The output capacitance needs to be selected based on the most stringent of these three criteria.

The desired response to a large change in the load current is the first criteria. The output capacitor needs to supply the load with current when the regulator cannot. This situation would occur if there are desired hold-up times for the regulator where the output capacitor must hold the output voltage above a certain level for a specified amount of time after the input power is removed. The regulator is also temporarily not able to supply sufficient output current if there is a large, fast increase in the current needs of the load such as a transition from no load to full load. The regulator usually needs two or more clock cycles for the control loop to see the change in load current and output voltage and adjust the duty cycle to react to the change. The output capacitor must be sized to supply the extra current to the load until the control loop responds to the load change. The output capacitance must be large enough to supply the difference in current for 2 clock cycles while only allowing a tolerable amount of droop in the output voltage. Equation 11 shows the minimum output capacitance necessary to accomplish this.

$$C_{o} = \frac{2 \times \Delta I_{out}}{f_{sw} \times \Delta V_{out}}$$

where

- ΔI_{OUT} is the change in output current.
- f_{SW} is the regulators switching frequency.
- ΔV_{OUT} is the allowable change in the output voltage.

(11)

For this example, the transient load response is specified as a 5% change in V_{OUT} for a load step of 3 A. For this example, $\Delta I_{OUT} = 3$ A and $\Delta V_{OUT} = 0.05 \times 3.3 = 0.165$ V. Using these numbers gives a minimum capacitance of 75.8 µF. This value does not take the ESR of the output capacitor into account in the output voltage change. For ceramic capacitors, the ESR is usually small enough to ignore in this calculation.

(12)

NSTRUMENTS

FXAS

Equation 12 calculates the minimum output capacitance needed to meet the output voltage ripple specification.

$$C_{o} > \frac{1}{8 \times f_{sw}} \times \frac{1}{\frac{V_{oripple}}{I_{oripple}}}$$

where

- f_{SW} is the switching frequency.
- V_{oripple} is the maximum allowable output voltage ripple.
- I_{oripple} is the inductor ripple current.

Equation 13 calculates the maximum ESR an output capacitor can have to meet the output voltage ripple specification.

$$R_{esr} < \frac{V_{oripple}}{I_{oripple}}$$
(13)

Additional capacitance deratings for aging, temperature, and DC bias should be factored in which increases this minimum value.

Capacitors generally have limits to the amount of ripple current they can handle without failing or producing excess heat. An output capacitor that can support the inductor ripple current must be specified. Some capacitor data sheets specify the root mean square (RMS) value of the maximum ripple current. Equation 14 can be used to calculate the RMS ripple current the output capacitor needs to support.

$$I_{\text{corms}} = \frac{V_{\text{out}} \times (V_{\text{inmax}} - V_{\text{out}})}{\sqrt{12} \times V_{\text{inmax}} \times L \times f_{\text{sw}}}$$
(14)

9.2.1.2.6 Input Capacitor Selection

The TPS65279 requires a high-quality ceramic, type X5R or X7R, input decoupling capacitor of at least 10-µF of effective capacitance on the PVIN input voltage pins. In some applications additional bulk capacitance may also be required for the PVIN input. The effective capacitance includes any DC bias effects. The voltage rating of the input capacitor must be greater than the maximum input voltage. The capacitor must also have a ripple current rating greater than the maximum input current ripple of the TPS65279. The input ripple current can be calculated using Equation 15.

$$I_{\text{inrms}} = I_{\text{out}} \times \sqrt{\frac{V_{\text{out}}}{V_{\text{inmin}}} \times \frac{(V_{\text{inmin}} - V_{\text{out}})}{V_{\text{inmin}}}}$$
(15)

The value of a ceramic capacitor varies significantly over temperature and the amount of DC bias applied to the capacitor. The capacitance variations due to temperature can be minimized by selecting a dielectric material that is stable over temperature. X5R and X7R ceramic dielectrics are usually selected for power regulator capacitors because they have a high capacitance to volume ratio and are fairly stable over temperature. The output capacitor must also be selected with the DC bias taken into account. The capacitance value of a capacitor decreases as the DC bias across a capacitor increases. For this example design, a ceramic capacitor with at least a 25-V voltage rating is required to support the maximum input voltage. TPS65279 may operate from a single supply. The input capacitance value determines the input ripple voltage of the regulator. The input voltage ripple can be calculated using Equation 16.

$$\Delta V_{\rm in} = \frac{I_{\rm outmax} \times 0.25}{C_{\rm in} \times f_{\rm sw}}$$
(16)

9.2.1.2.7 Loop Compensation

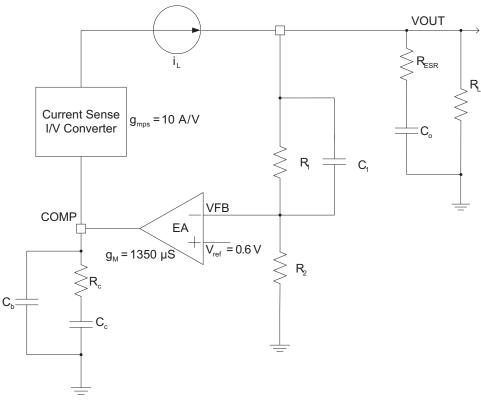
Integrated buck DC/DC converter in TPS65279 incorporates a peak current mode control scheme. The error amplifier is a transconductance amplifier with a gain of 1350 μ A/V. A typical type II compensation circuit adequately delivers a phase margin between 60° and 90°. C_b adds a high frequency pole to attenuate high frequency noise when needed. To calculate the external compensation components, follow the following steps.

1. Select switching frequency f_{sw} that is appropriate for application depending on L and C sizes, output ripple, EMI, and etc. Switching frequency between 500 kHz to 1 MHz gives best trade off between performance and cost. To optimize efficiency, lower switching frequency is desired.

- 2. Set up cross over frequency, $f_{\rm c}$, which is typically between 1/5 and 1/20 of $f_{\rm sw}$.
- 3. R_c can be determined by:

$$\mathsf{R}_{\mathsf{C}} = \frac{2\pi \times f_{\mathsf{C}} \times \mathsf{V}_{\mathsf{O}} \times \mathsf{C}_{\mathsf{O}}}{\mathsf{g}_{\mathsf{M}} \times \mathsf{Vref} \times \mathsf{gm}_{\mathsf{ps}}}$$

where

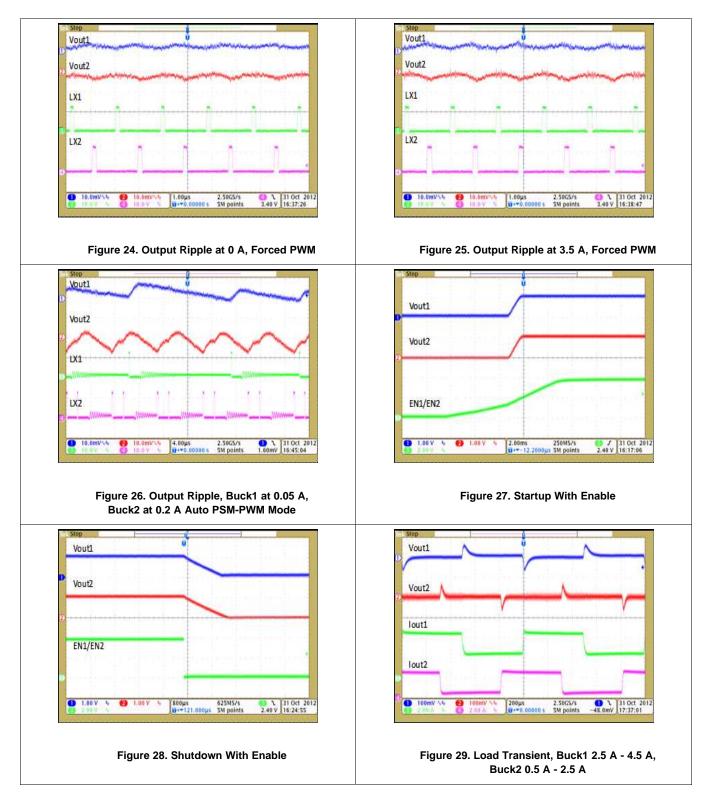

- g_M is the error amplifier gain (1350 μ A/V).
- gm_{ps} is the power stage voltage to current conversion gain (10 A/V).
- 4. Calculate C_C by placing a compensation zero at or before the dominant pole:

$$(f_{\rm P} = \frac{1}{C_{\rm O} \times R_{\rm L} \times 2\pi})$$

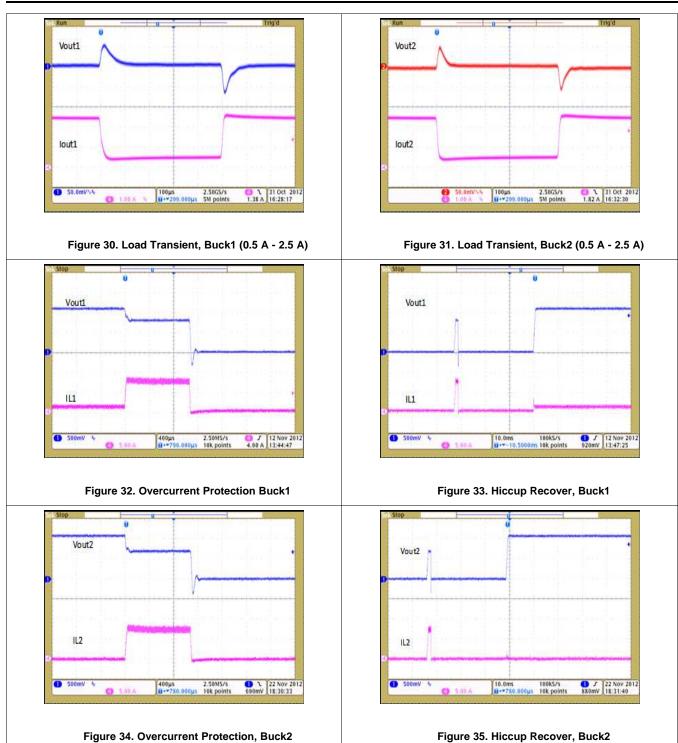
$$C_{\rm C} = \frac{R_{\rm L} \times C_{\rm O}}{R_{\rm C}}$$
(17)
(17)
(18)

5. Optional C_b can be used to cancel the zero from the ESR associated with C_0 .

$$C_{b} = \frac{R_{ESR} \times Co}{R_{C}}$$
(19)

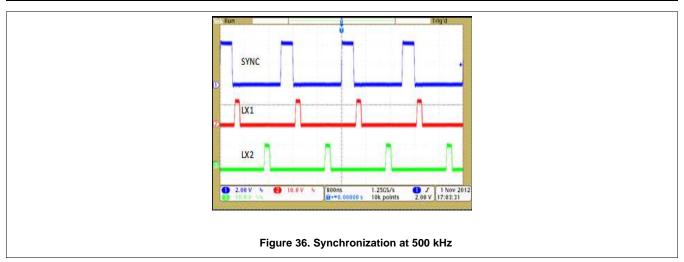


TPS65279 ZHCSBF7C - AUGUST 2013 - REVISED MAY 2015



www.ti.com.cn

9.2.1.3 Application Curves



TPS65279 ZHCSBF7C – AUGUST 2013– REVISED MAY 2015

www.ti.com.cn

9.2.2 Current Sharing Mode Operation Application

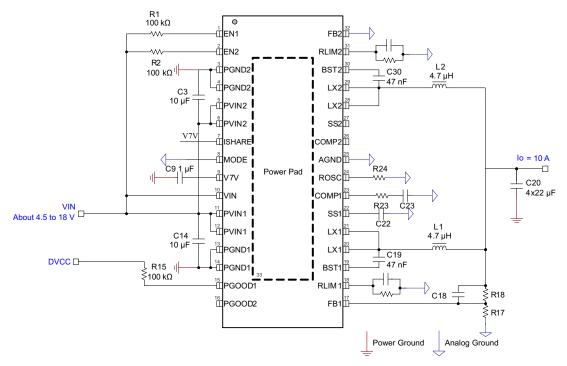
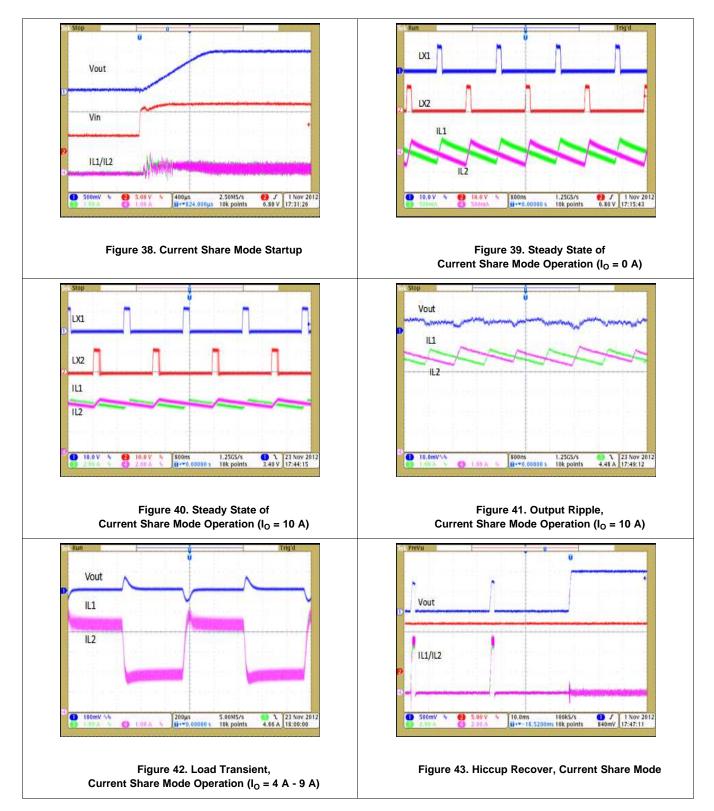


Figure 37. Share Mode Operation to Deliver 10 A

9.2.2.1 Design Requirements

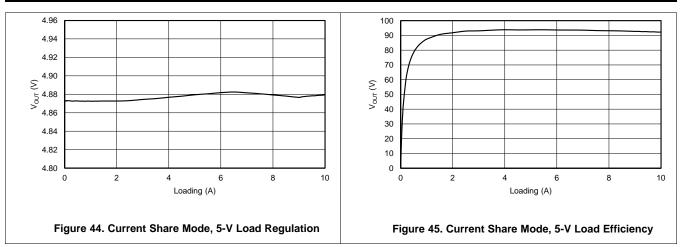
See previous *Design Requirements*.


9.2.2.2 Detailed Design Procedure

As TPS65279 utilizes peak current mode control method, the two buck converters can be paralleled together to provide large current. The converters will work in current sharing mode by connecting the iShare pin to high. Once in current mode, signal pins in Buck 2 are not active, for example, FB2, COMP2, SS2, these pins will be neglected. Connecting FB2 to GND and floating COMP2, SS2, PGOOD2 are recommended.

For other component selection, refer to previous *Detailed Design Procedure*.

9.2.2.3 Application Curves



TPS65279

www.ti.com.cn

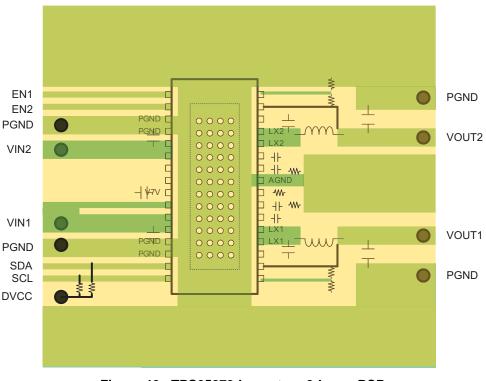
ZHCSBF7C - AUGUST 2013-REVISED MAY 2015

10 Power Supply Recommendations

This device is designed to operate from an input voltage supply range between 4.5 and 18 V. This input power supply should be well regulated. If the input supply is located more than a few inches from the TPS65400 converter, additional bulk capacitance may be required in addition to the ceramic bypass capacitors. An electrolytic capacitor with a value of 22 μ F is a typical choice.

11 Layout

11.1 Layout Guidelines


The designer can layout the TPS65279 on a 2-layer PCB as shown in Figure 46.

Layout is a critical portion of good power supply design. See Figure 46 for a PCB layout example. The top layer contains the main power traces for VIN, VOUT, and VLX. Also on the top layer are connections for the remaining pins of the TPS65279 and a large top side area filled with ground. The top layer ground area should be connected to the internal ground layer(s) using vias at the input bypass capacitor, the output filter capacitor and directly under the TPS65279 device to provide a thermal path from the exposed thermal pad land to ground. The bottom layer acts as ground plane connecting analog ground and power ground.

The GND pin should be tied directly to the power pad under the IC and the power pad. For operation at full rated load, the top side ground area together with the internal ground plane, must provide adequate heat dissipating area. There are several signals paths that conduct fast changing currents or voltages that can interact with stray inductance or parasitic capacitance to generate noise or degrade the power supplies performance. To help eliminate these problems, the PVIN pin should be bypassed to ground with a low ESR ceramic bypass capacitor with X5R or X7R dielectric. Take care to minimize the loop area formed by the bypass capacitor connections, the PVIN pins, and the ground connections.

The VIN pin must also be bypassed to ground using a low ESR ceramic capacitor with X5R or X7R dielectric.

Since the LX connection is the switching node, the output inductor should be located close to the LX pins, and the area of the PCB conductor minimized to prevent excessive capacitive coupling. The output filter capacitor ground should use the same power ground trace as the PVIN input bypass capacitor. Try to minimize this conductor length while maintaining adequate width. The additional external components can be placed approximately as shown.

11.2 Layout Example

Figure 46. TPS65279 Layout on 2-Layer PCB

12 器件和文档支持

12.1 社区资源

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.2 商标

E2E is a trademark of Texas Instruments. WEBENCH is a registered trademark of Texas Instruments. All other trademarks are the property of their respective owners.

12.3 静电放电警告

ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序,可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

12.4 术语表

SLYZ022 — TI 术语表。

这份术语表列出并解释术语、首字母缩略词和定义。

13 机械、封装和可订购信息

以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不 对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。

重要声明

德州仪器(TI)及其下属子公司有权根据 JESD46 最新标准,对所提供的产品和服务进行更正、修改、增强、改进或其它更改,并有权根据 JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息,并验证这些信息是否完整且是最新的。所有产品的销售 都遵循在订单确认时所提供的TI 销售条款与条件。

TI保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为有必要时才会使用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。

TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,客户应提供充分的设计与操作安全措施。

TI不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权 限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。

对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行 复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。

在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明 示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。

客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而对 TI 及其代理造成的任何损失。

在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。

TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。

只有那些 TI 特别注明属于军用等级或"增强型塑料"的 TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有法律和法规要求。

TI 己明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要求,TI不承担任何责任。

	产品		应用
数字音频	www.ti.com.cn/audio	通信与电信	www.ti.com.cn/telecom
放大器和线性器件	www.ti.com.cn/amplifiers	计算机及周边	www.ti.com.cn/computer
数据转换器	www.ti.com.cn/dataconverters	消费电子	www.ti.com/consumer-apps
DLP® 产品	www.dlp.com	能源	www.ti.com/energy
DSP - 数字信号处理器	www.ti.com.cn/dsp	工业应用	www.ti.com.cn/industrial
时钟和计时器	www.ti.com.cn/clockandtimers	医疗电子	www.ti.com.cn/medical
接口	www.ti.com.cn/interface	安防应用	www.ti.com.cn/security
逻辑	www.ti.com.cn/logic	汽车电子	www.ti.com.cn/automotive
电源管理	www.ti.com.cn/power	视频和影像	www.ti.com.cn/video
微控制器 (MCU)	www.ti.com.cn/microcontrollers		
RFID 系统	www.ti.com.cn/rfidsys		
OMAP应用处理器	www.ti.com/omap		
无线连通性	www.ti.com.cn/wirelessconnectivity	德州仪器在线技术支持社区	www.deyisupport.com

邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122 Copyright © 2015, 徳州仪器半导体技术(上海)有限公司

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
TPS65279DAP	ACTIVE	HTSSOP	DAP	32	46	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR		TPS65279	Samples
TPS65279DAPR	ACTIVE	HTSSOP	DAP	32	2000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	TPS65279	Samples
TPS65279RHHR	ACTIVE	VQFN	RHH	36	2500	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	TPS 65279	Samples
TPS65279RHHT	ACTIVE	VQFN	RHH	36	250	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	TPS 65279	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

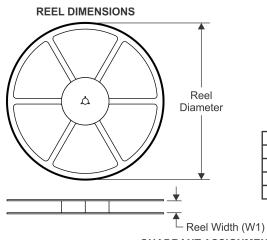
⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

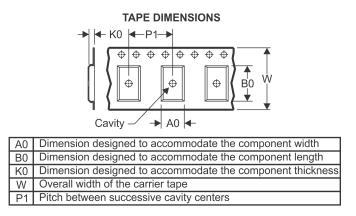
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

www.ti.com

10-Dec-2020

continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

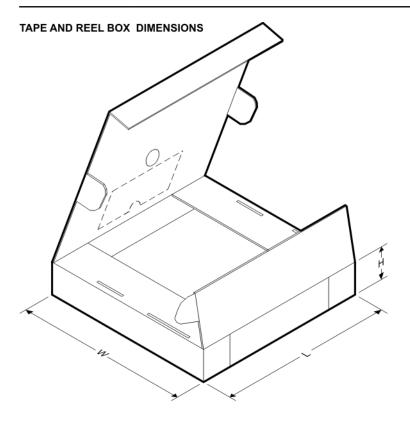

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are n	ominal											
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS65279DAF	PR HTSSOP	DAP	32	2000	330.0	24.4	8.6	11.5	1.6	12.0	24.0	Q1
TPS65279RHH	IR VQFN	RHH	36	2500	330.0	16.4	6.3	6.3	1.1	12.0	16.0	Q2
TPS65279RH	IT VQFN	RHH	36	250	180.0	16.4	6.3	6.3	1.1	12.0	16.0	Q2

TEXAS INSTRUMENTS

www.ti.com

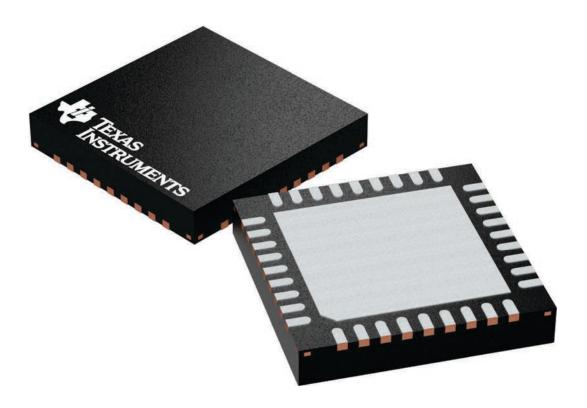
PACKAGE MATERIALS INFORMATION

15-Feb-2019

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS65279DAPR	HTSSOP	DAP	32	2000	350.0	350.0	43.0
TPS65279RHHR	VQFN	RHH	36	2500	367.0	367.0	38.0
TPS65279RHHT	VQFN	RHH	36	250	210.0	185.0	35.0

RHH 36

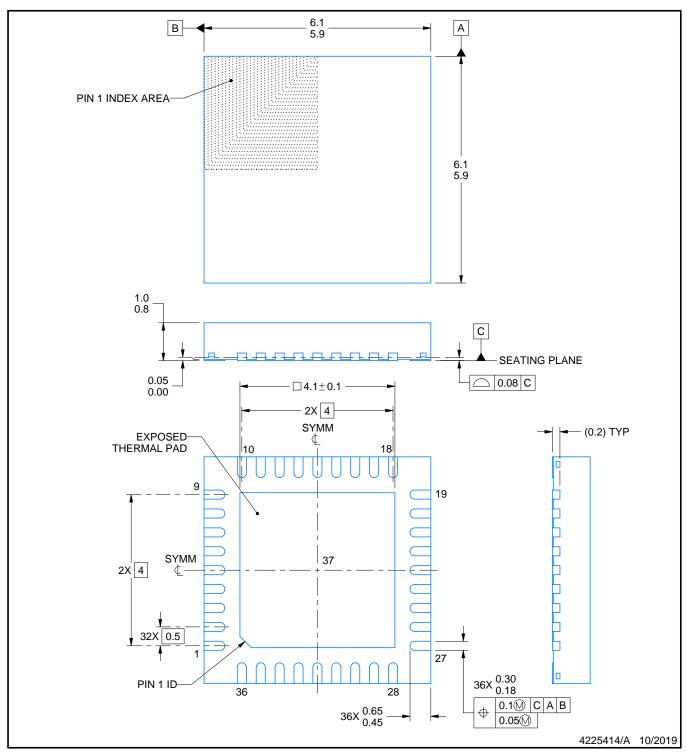

6 x 6, 0.5 mm pitch

GENERIC PACKAGE VIEW

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.


RHH0036B

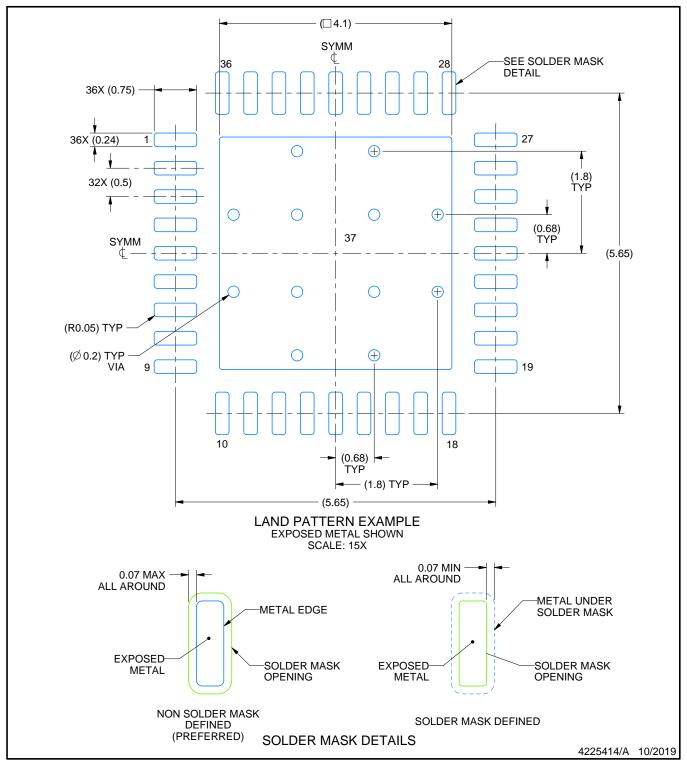
PACKAGE OUTLINE

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



RHH0036B

EXAMPLE BOARD LAYOUT

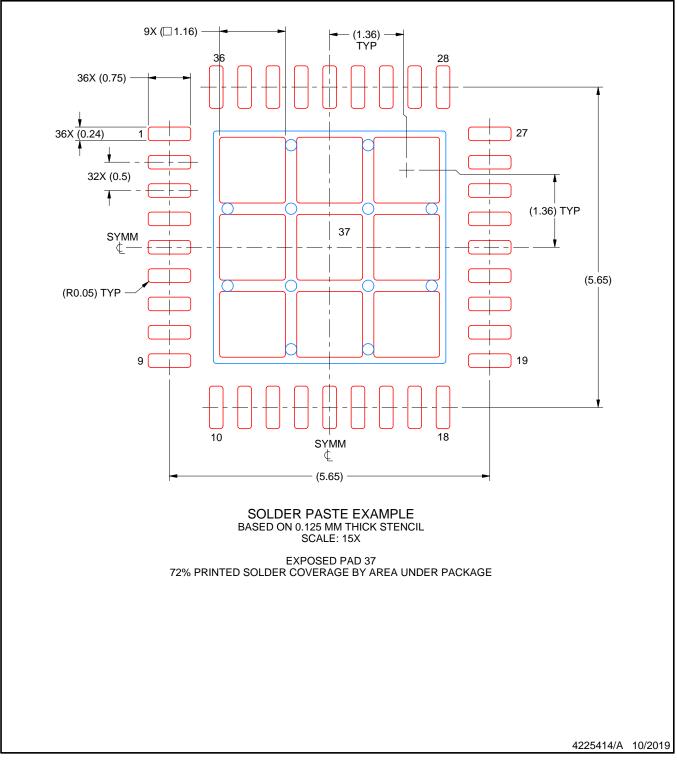
VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

 This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.



RHH0036B

EXAMPLE STENCIL DESIGN

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

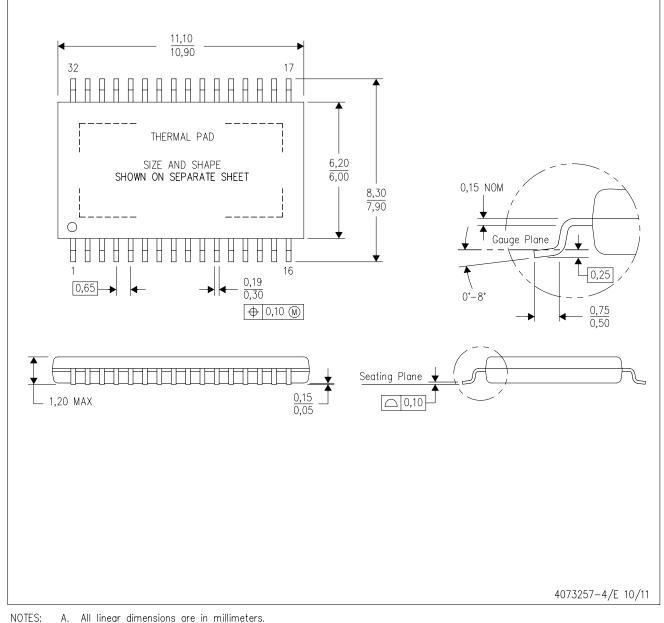
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

DAP 32

GENERIC PACKAGE VIEW

PowerPAD[™] TSSOP - 1.2 mm max height

8.1 x 11, 0.65 mm pitch

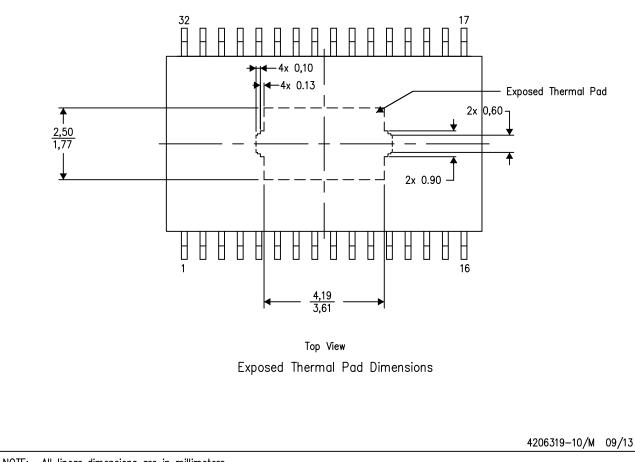

PLASTIC SMALL OUTLINE

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

- This drawing is subject to change without notice. Β.
- Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side. C.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad
- Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com http://www.ti.com. Falls within JEDEC MO-153 Variation DCT.

PowerPAD is a trademark of Texas Instruments.

DAP (R-PDSO-G32)


PowerPAD[™] PLASTIC SMALL OUTLINE

THERMAL INFORMATION

This PowerPAD^{\mathbb{N}} package incorporates an exposed thermal pad that is designed to be attached to a printed circuit board (PCB). The thermal pad must be soldered directly to the PCB. After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: All linear dimensions are in millimeters

PowerPAD is a trademark of Texas Instruments.

重要声明和免责声明

Ⅱ 均以"原样"提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

所述资源可供专业开发人员应用TI产品进行设计使用。您将对以下行为独自承担全部责任:(1)针对您的应用选择合适的TI产品;(2)设计、 验证并测试您的应用;(3)确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI对您使用 所述资源的授权仅限于开发资源所涉及TI产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权 许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI及其代表造成的损害。

TI所提供产品均受TI的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。

邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2020 德州仪器半导体技术(上海)有限公司