

Sample &

Buy

INA225-Q1

ZHCSDE7-FEBRUARY 2015

INA225-Q1 汽车级 36V 可编程增益、电压输出、双向、零漂移、 高速电流 分流监控器

Technical

Documents

特性 1

- 符合 AEC-Q100 标准: •
 - 温度等级 1: -40°C 至 +125°C
 - 人体模型 (HBM) 静电放电 (ESD) 分类等级 2
 - 充电器件模型 (CDM) ESD 分类等级 C4B
- 宽共模范围: 0V 至 36V
- 偏移电压: ±150µV(最大值,所有增益)
- 偏移电压漂移: 0.5µV/℃ (最大值)
- 温度范围内的增益精度(最大值):
 - 25V/V, 50V/V: ±0.15%
 - 100V/V: ±0.2%
 - 200V/V: ±0.3%
 - 10ppm/°C 增益漂移
- 带宽: 250kHz (增益 = 25V/V)
- 可编辑增益:
 - G1 = 25V/V
 - G2 = 50V/V
 - G3 = 100V/V
 - G4 = 200V/V
- 静态电流: 350µA(最大值)
- 封装: 超薄小外形尺寸封装 (VSSOP)-8
- 2 应用
- 汽车照明
- 车身控制模块
- 电机控制
- 阀控制
- 仪表板 ٠
- 中央控制模块

3 说明

Tools &

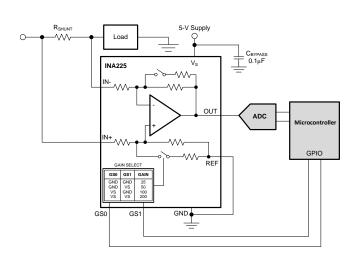
Software

INA225-Q1 是一款电压输出、电流感测放大器,能够 在 0V 至 36V 共模电压上感测电流感测电阻的压降, 并且与电源电压无关。 此器件是一款双向、电流分流 监控器,允许外部基准用于测量双向流入电流感测电阻 器的电流。

Support &

Community

2.2


可通过两个增益选择引脚(GS0和GS1)选择四个离 散增益级别,从而设定增益 25V/V、50V/V、100V/V 和 200V/V。凭借低偏移、零漂移架构和精密的增益 值,该器件可感测低至 10mV 的满量程电流分流电阻 的最大压降,而目能够在整个工作温度范围内保持很高 的测量精度。

此器件由一个 +2.7V 至 +36V 的单电源供电,最大电 源电流为 350µA。 此器件的额定扩展工作温度范围为 -40°C 至 +125℃,采用超薄小外形尺寸封装 (VSSOP)-8 封装。

哭仳信自(1)

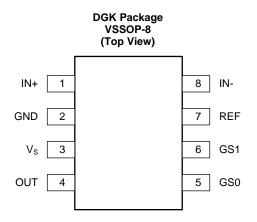
1111日心					
器件型号	封装	封装尺寸(标称值)			
INA225-Q1	VSSOP (8)	3.00mm x 3.00mm			

(1) 要了解所有可用封装,请参见数据表末尾的封装选项附录。

Texas Instruments

目录

1	特性	
2	应用	1
3	说明	1
4	修订	历史记录
5	Pin	Configuration and Functions 3
6	Spe	cifications
	6.1	Absolute Maximum Ratings 4
	6.2	ESD Ratings 4
	6.3	Recommended Operating Conditions 4
	6.4	Thermal Information 4
	6.5	Electrical Characteristics5
	6.6	Typical Characteristics 7
7	Deta	ailed Description 13
	7.1	Overview 13
	7.2	Functional Block Diagram 13


	7.3	Feature Description	13
	7.4	Device Functional Modes	16
8	App	lications and Implementation	19
	8.1	Application Information	19
	8.2	Typical Applications	19
9	Pow	er Supply Recommendations	25
10	Lay	out	25
	10.1	Layout Guidelines	25
	10.2	Layout Example	25
11	器件	和文档支持	26
	11.1	相关文档	26
	11.2	商标	26
	11.3	静电放电警告	26
	11.4	术语表	26
12	机械	封装和可订购信息	26

4 修订历史记录

日期	修订版本	注释
2015 年 2 月	*	最初发布。

5 Pin Configuration and Functions

Pin Functions

	PIN	1/0	DESCRIPTION	
NO.	NAME	1/0	DESCRIPTION	
1	IN+	Analog input	Connect to supply side of shunt resistor.	
2	GND	Analog	Ground	
3	Vs	Analog	Power supply, 2.7 V to 36 V	
4	OUT	Analog output	Output voltage	
5	GS0	Digital input	Gain select. Connect to V _S or GND. Table 3 lists terminal settings and the corresponding gain value.	
6	GS1	Digital input	Gain select. Connect to V _S or GND. Table 3 lists terminal settings and the corresponding gain value.	
7	REF	Analog input	Reference voltage, 0 V to V_S	
8	IN–	Analog input	Connect to load side of shunt resistor.	

6 Specifications

6.1 Absolute Maximum Ratings⁽¹⁾

Over operating free-air temperature range, unless otherwise noted.

		MIN	MAX	UNIT
Supply voltage			+40	V
Analog inputs, V _{IN+} , V _{IN-} ⁽²⁾	Differential $(V_{IN+}) - (V_{IN-})$	-40	+40	V
Analog inputs, v_{IN+} , v_{IN-}	Common-mode ⁽³⁾	GND – 0.3	+40	V
REF, GS0, and GS1 inputs		GND – 0.3	(V _S) + 0.3	V
Output		GND – 0.3	(V _S) + 0.3	V
	Operating, T _A	-55	+150	°C
Temperature	Junction, T _J		+150	°C
	Storage, T _{stg}	-65	+150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2)

 V_{IN+} and V_{IN-} are the voltages at the IN+ and IN- terminals, respectively. Input voltage at any terminal may exceed the voltage shown if the current at that terminal is limited to 5 mA. (3)

6.2 ESD Ratings

			VALUE	UNIT
Marken and the discharge	Human-body model (HBM), per AEC Q100-002 ⁽¹⁾	±2500	V	
V(ESD)	Electrostatic discharge	Charged-device model (CDM), per AEC Q100-011	±1000	V

(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions

Over operating free-air temperature range, unless otherwise noted.

		MIN	NOM	MAX	UNIT
V _{CM}	Common-mode input voltage		12		V
Vs	Operating supply voltage		5		V
T _A	Operating free-air temperature	-40		+125	°C

6.4 Thermal Information

		INA225-Q1	
	THERMAL METRIC	DGK (VSSOP)	UNIT
		8 PINS	
$R_{ extsf{ heta}JA}$	Junction-to-ambient thermal resistance	163.6	
R _{0JC(top)}	Junction-to-case (top) thermal resistance	57.7	
$R_{\theta JB}$	Junction-to-board thermal resistance	84.7	°C/W
Ψ _{JT}	Junction-to-top characterization parameter	6.5	C/VV
Ψ _{JB}	Junction-to-board characterization parameter	83.2	
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	

6.5 Electrical Characteristics

At $T_A = +25^{\circ}C$, $V_{SENSE} = V_{IN+} - V_{IN-}$, $V_S = +5$ V, $V_{IN+} = 12$ V, and $V_{REF} = V_S / 2$, unless otherwise noted.

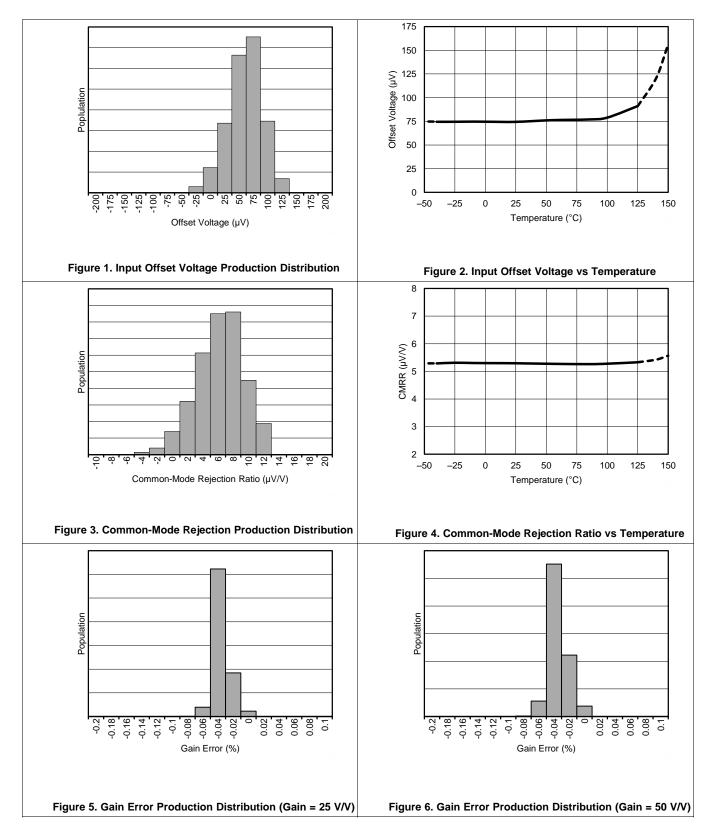
	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
INPUT		·				
V _{CM}	Common-mode input range	$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$	0		36	V
CMR	Common-mode rejection	$ \begin{array}{l} V_{\text{IN+}}=0 \text{ V to } +36 \text{ V}, V_{\text{SENSE}}=0 \text{mV}, \\ T_{\text{A}}=-40^{\circ}\text{C} \text{ to } +125^{\circ}\text{C} \end{array} $	95	105		dB
V _{os}	Offset voltage, RTI ⁽¹⁾	V _{SENSE} = 0 mV		±75	±150	μV
dV _{OS} /dT	RTI vs temperature	$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$		0.2	0.5	µV/°C
PSRR	Power-supply rejection ratio	$V_{SENSE} = 0 \text{ mV}, V_{REF} = 2.5 \text{ V},$ $V_{S} = 2.7 \text{ V to } 36 \text{ V}$		±0.1	±1	μV/V
в	Input bias current	V _{SENSE} = 0 mV	55	72	85	μA
los	Input offset current	V _{SENSE} = 0 mV		±0.5		μA
V _{REF}	Reference input range	$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$	0		Vs	V
OUTPUT						
G	Gain		25, 5	50, 100, 200		V/V
		Gain = 25 V/V and 50 V/V, V_{OUT} = 0.5 V to V_S – 0.5 V, T_A = –40°C to +125°C		±0.05%	±0.15%	
E _G	Gain error	Gain = 100 V/V, V _{OUT} = 0.5 V to V _S – 0.5 V, T _A = -40°C to +125°C		±0.1%	±0.2%	
		Gain = 200 V/V, V_{OUT} = 0.5 V to V_S – 0.5 V, T _A = -40°C to +125°C		±0.1%	±0.3%	
	Gain error vs temperature	G = 25 V/V, 50 V/V, 100 V/V, T _A = -40°C to +125°C		3	10	ppm/°
		G = 200 V/V, $T_A = -40^{\circ}C$ to +125°C		5	15	
	Nonlinearity error	$V_{OUT} = 0.5 \text{ V to } V_{S} - 0.5 \text{ V}$		±0.01%		
	Maximum capacitive load	No sustained oscillation		1		nF
VOLTAG	E OUTPUT ⁽²⁾	· · ·			·	
	Swing to V _S power-supply rail	$R_L = 10 \text{ k}\Omega \text{ to GND}, T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$		$V_{\rm S} - 0.05$	$V_{S} - 0.2$	V
		$V_{REF} = V_S / 2$, all gains, $R_L = 10 \text{ k}\Omega$ to GND, $T_A = -40^{\circ}\text{C}$ to +125°C		V _{GND} + 5	V _{GND} + 10	mV
		V_{REF} = GND, gain = 25 V/V, R _L = 10 k Ω to GND, T _A = -40°C to +125°C		V _{GND} + 7		mV
	Swing to GND ⁽³⁾	V_{REF} = GND, gain = 50 V/V, R_L = 10 k Ω to GND, T_A = -40°C to +125°C		V _{GND} + 15		mV
		V_{REF} = GND, gain = 100 V/V, R _L = 10 k Ω to GND, T _A = -40°C to +125°C		V _{GND} + 30		mV
		$\label{eq:V_REF} \begin{array}{l} V_{REF} = GND, \mbox{ gain} = 200 \mbox{ V/V}, R_{L} = 10 k\Omega \mbox{ to } \mbox{ GND}, \\ T_{A} = -40^\circ \mbox{C} \mbox{ to } +125^\circ \mbox{C} \end{array}$		V _{GND} + 60		mV
FREQUE	NCY RESPONSE					
		Gain = 25 V/V, C _{LOAD} = 10 pF		250		kHz
	Pondwidth	Gain = 50 V/V, C _{LOAD} = 10 pF		200		kHz
BW	Bandwidth	Gain = 100 V/V, C _{LOAD} = 10 pF		125		kHz
		Gain = 200 V/V, C _{LOAD} = 10 pF		70		kHz
SR	Slew rate			0.4		V/µs
NOISE, F	RTI ⁽¹⁾	·				
	Voltage noise density			50		nV/√F

RTI = referred-to-input.
See Typical Characteristic curve, *Output Voltage Swing vs Output Current* (Figure 10).
See Typical Characteristic curve, *Unidirectional Output Voltage Swing vs. Temperature* (Figure 14)

TEXAS INSTRUMENTS

www.ti.com.cn

Electrical Characteristics (continued)

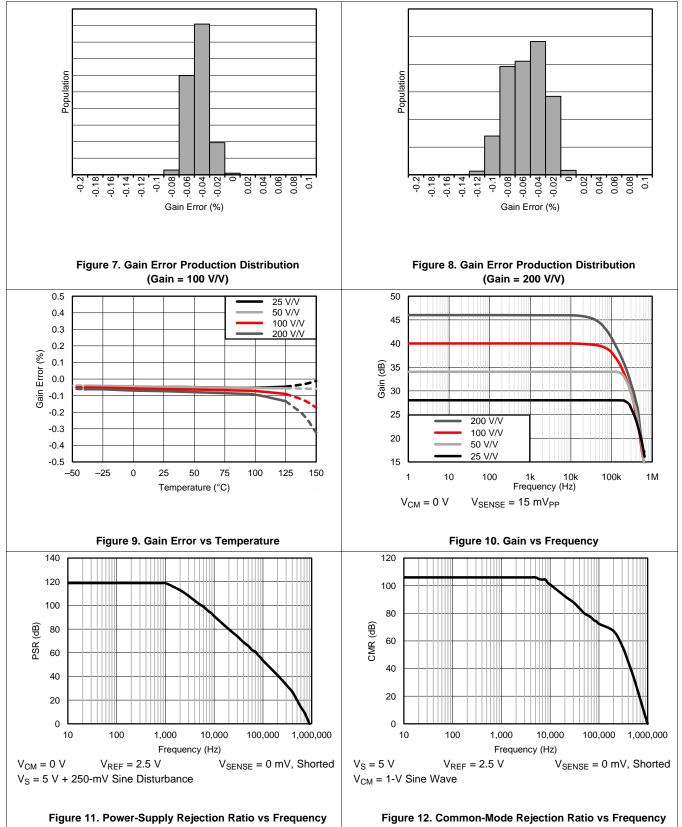

At $T_A = +25^{\circ}C$, $V_{SENSE} = V_{IN+} - V_{IN-}$, $V_S = +5$ V, $V_{IN+} = 12$ V, and $V_{REF} = V_S / 2$, unless otherwise noted.

	PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNIT
DIGITA	L INPUT		÷			
Ci	Input capacitance			3		pF
	Leakage input current	$0 \le V_{IN} \le V_{S}$		1	2	μA
VIL	Low-level input logic level		0		0.6	V
V _{IH}	High-level input logic level		2		Vs	V
POWER	R SUPPLY					
Vs	Operating voltage range	$T_A = -40^{\circ}C$ to $+125^{\circ}C$	+2.7		+36	V
Ιq	Quiescent current	V _{SENSE} = 0 mV		300	350	μA
	I _Q over temperature	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			375	μA
TEMPE	RATURE RANGE					
	Specified range		-40		+125	°C
	Operating range		-55		+150	°C

6.6 Typical Characteristics

At T_{A} = +25°C, V_{S} = +5 V, V_{IN+} = 12 V, and V_{REF} = V_{S} / 2, unless otherwise noted.

INA225-Q1 ZHCSDE7-FEBRUARY 2015


www.ti.com.cn

ISTRUMENTS

EXAS

Typical Characteristics (continued)

At T_A = +25°C, V_S = +5 V, V_{IN+} = 12 V, and V_{REF} = V_S / 2, unless otherwise noted.

Typical Characteristics (continued)

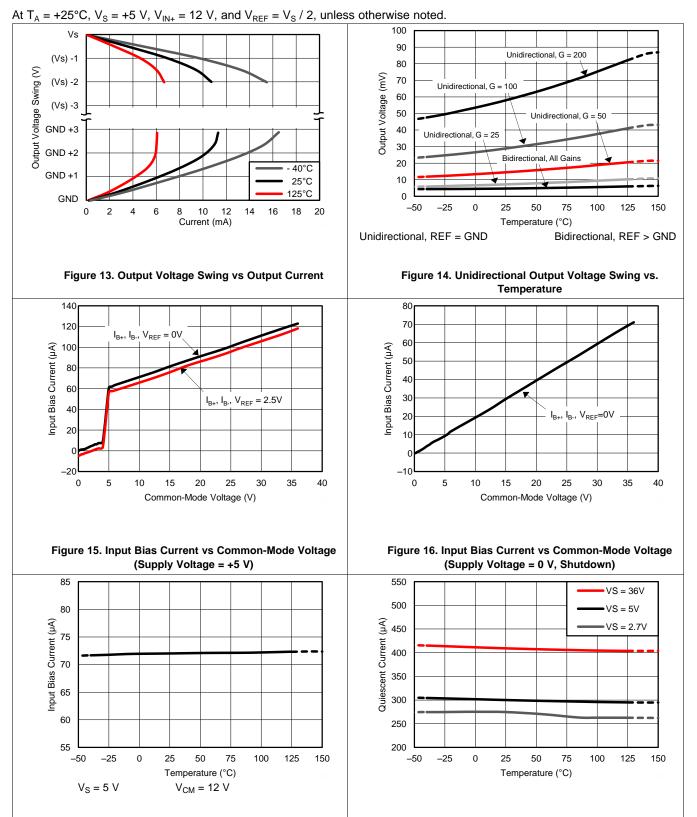
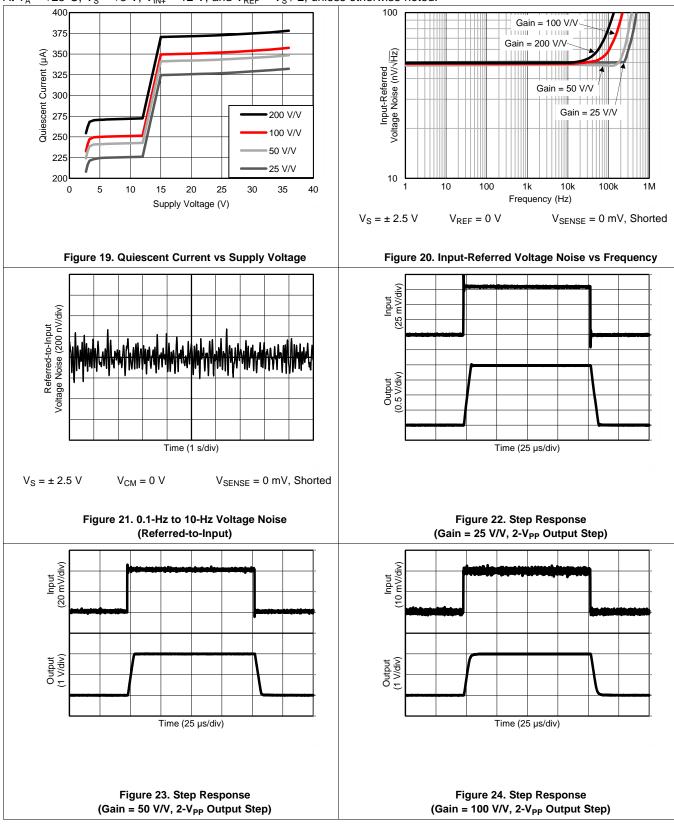


Figure 17. Input Bias Current vs Temperature

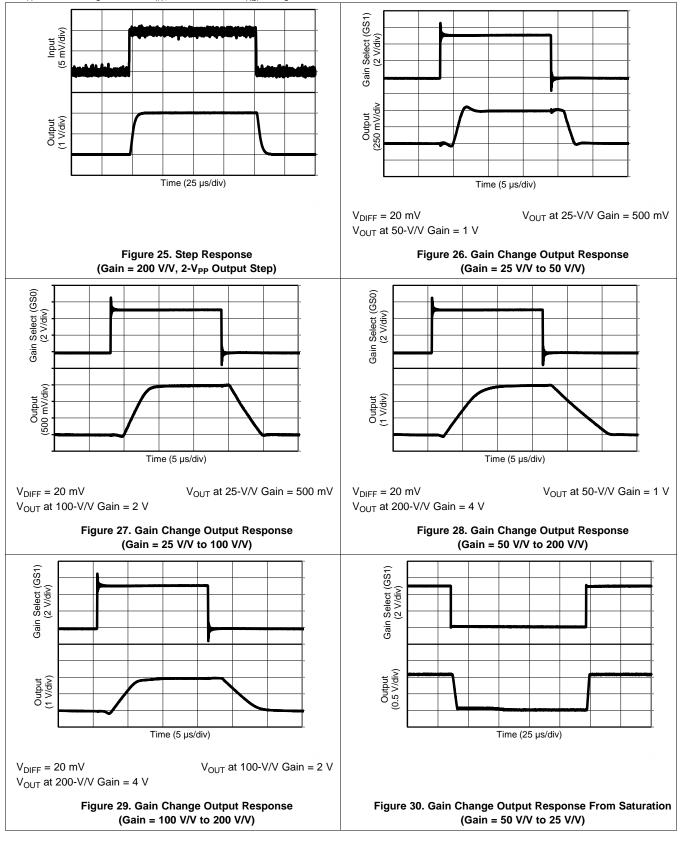
Figure 18. Quiescent Current vs Temperature



INA225-Q1 ZHCSDE7-FEBRUARY 2015

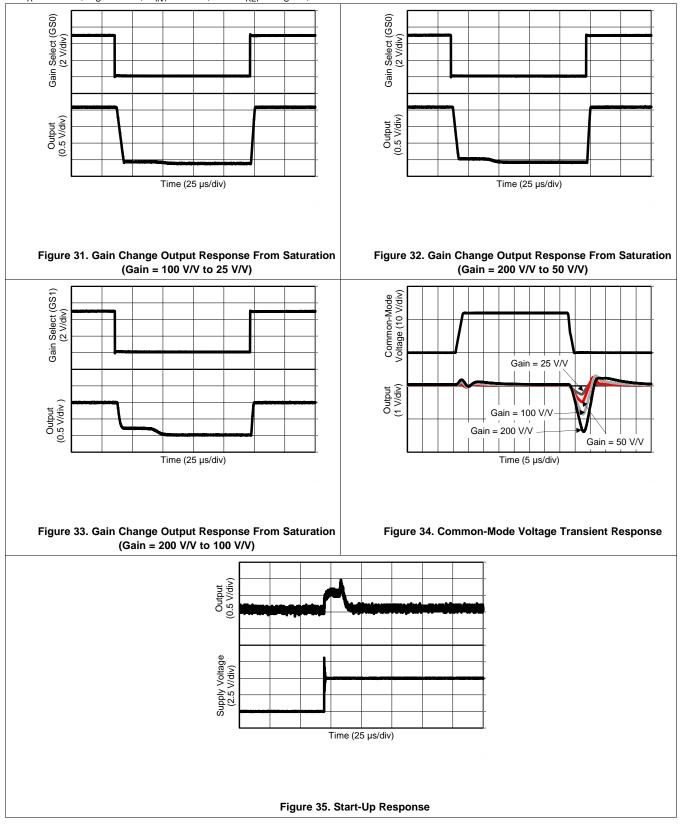
www.ti.com.cn

Typical Characteristics (continued)


At $T_A = +25^{\circ}C$, $V_S = +5$ V, $V_{IN+} = 12$ V, and $V_{REF} = V_S / 2$, unless otherwise noted.

Typical Characteristics (continued)

At $T_A = +25^{\circ}C$, $V_S = +5$ V, $V_{IN+} = 12$ V, and $V_{REF} = V_S$ / 2, unless otherwise noted.

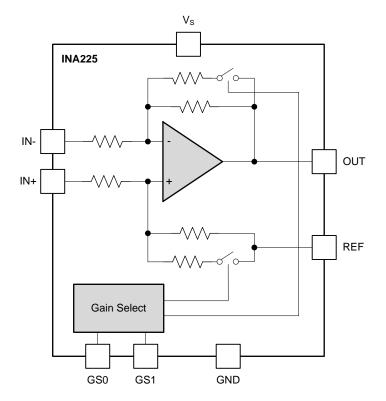


Texas Instruments

www.ti.com.cn

Typical Characteristics (continued)

At $T_A = +25^{\circ}C$, $V_S = +5$ V, $V_{IN+} = 12$ V, and $V_{REF} = V_S / 2$, unless otherwise noted.



7 Detailed Description

7.1 Overview

The INA225-Q1 is a 36-V, common-mode, zero-drift topology, current-sensing amplifier. This device features a significantly higher signal bandwidth than most comparable precision, current-sensing amplifiers, reaching up to 125 kHz at a gain of 100 V/V. A very useful feature present in the device is the built-in programmable gain selection. To increase design flexibility with the device, a programmable gain feature is added that allows changing device gain during operation in order to accurately monitor wider dynamic input signal ranges. Four discrete gain levels (25 V/V, 50 V/V, 100 V/V, and 200 V/V) are available in the device and are selected using the two gain-select terminals, GS0 and GS1.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Selecting A Shunt Resistor

The device measures the differential voltage developed across a resistor when current flows through it. This resistor is commonly referred to as a *current-sensing resistor* or a *current-shunt resistor*, with each term commonly used interchangeably. The flexible design of the device allows a wide range of input signals to be measured across this current-sensing resistor.

Selecting the value of this current-sensing resistor is based primarily on two factors: the required accuracy of the current measurement and the allowable power dissipation across the resistor. The larger the voltage developed across this resistor the more accurate of a measurement that can be made because of the fixed internal amplifier errors. These fixed internal amplifier errors, which are dominated by the internal offset voltage of the device, result in a larger measurement uncertainty when the input signal gets smaller. When the input signal gets larger, the measurement uncertainty is reduced because the fixed errors become a smaller percentage of the signal being measured.

Feature Description (continued)

A system design trade-off for improving the measurement accuracy through the use of the larger input signals is the increase in the power dissipated across the current-sensing resistor. Increasing the value of the current-shunt resistor increases the differential voltage developed across the resistor when current passes through it. However, the power that is then dissipated across this component also increases. Decreasing the value of the current-shunt resistor value reduces the power dissipation requirements of the resistor, but increases the measurement errors resulting from the decreasing input signal. Finding the optimal value for the shunt resistor requires factoring both the accuracy requirement of the application and allowable power dissipation into the selection of the component. An increasing amount of very low ohmic value resistors are becoming available with values reaching down to $200 \ \mu\Omega$ with power dissipations of up to 5 W, thus enabling very large currents to be accurately monitored using sensing resistors.

The maximum value for the current-sensing resistor that can be chosen is based on the full-scale current to be measured, the full-scale input range of the circuitry following the device, and the device gain selected. The minimum value for the current-sensing resistor is typically a design-based decision because maximizing the input range of the circuitry following the device is commonly preferred. Full-scale output signals that are significantly less than the full input range of the circuitry following the device output can limit the ability of the system to exercise the full dynamic range of system control based on the current measurement.

7.3.1.1 Selecting A Current-Sense Resistor Example

The example in Table 1 is based on a set of application characteristics, including a 10-A full-scale current range and a 4-V full-scale output requirement. The calculations for selecting a current-sensing resistor of an appropriate value are shown in Table 1.

Sense in Concentration Concentration (SENSE					
	PARAMETER	EQUATION	RESULT		
I _{MAX}	Full-scale current		10 A		
V _{OUT}	Full-scale output voltage		4 V		
Gain	Gain selected	Initial selection based on default gain setting.	25 V/V		
V _{DIFF}	Ideal maximum differential input voltage	V _{Diff} = V _{OUT} / Gain	160 mV		
R _{SHUNT}	Shunt resistor value	$R_{SHUNT} = V_{Diff} / I_{MAX}$	16 mΩ		
P _{RSENSE}	Current-sense resistor power dissipation	R _{SENSE} x I _{MAX} ²	1.6 W		
V _{OS} Error	Offset voltage error	(V _{OS} / V _{DIFF}) x 100	0.094%		

Table 1. Calculating the Current-Sense Resistor, R_{SENSE}

7.3.1.2 Optimizing Power Dissipation versus Measurement Accuracy

The example shown in Table 1 results in a maximum current-sensing resistor value of 16 m Ω to develop the 160 mV required to achieve the 4-V full-scale output with the gain set to 25 V/V. The power dissipated across this 16-m Ω resistor at the 10-A current level is 1.6 W, which is a fairly high power dissipation for this component. Adjusting the device gain allows alternate current-sense resistor values to be selected to ease the power dissipation requirement of this component.

Changing the gain setting from 25 V/V to 100 V/V, as shown in Table 2, decreases the maximum differential input voltage from 160 mV down to 40 mV, thus requiring only a 4-m Ω current-sensing resistor to achieve the 4-V output at the 10-A current level. The power dissipated across this resistor at the 10-A current level is 400 mW, significantly increasing the availability of component options to select from.

The increase in gain by a factor of four reduces the power dissipation requirement of the current-sensing resistor by this same factor of four. However, with this smaller full-scale signal, the measurement uncertainty resulting from the device fixed input offset voltage increases by the same factor of four. The measurement error resulting from the device input offset voltage is approximately 0.1% at the 160-mV full-scale input signal for the 25-V/V gain setting. Increasing the gain to 100 V/V and decreasing the full-scale input signal to 40 mV increases the offset induced measurement error to 0.38%.

	PARAMETER	EQUATION	RESULT
I _{MAX}	Full-scale current		10 A
V _{OUT}	Full-scale output voltage		4 V
Gain	Gain selected		100 V/V
V _{DIFF}	Ideal maximum differential input voltage	V _{Diff} = V _{OUT} / Gain	40 mV
R _{SENSE}	Current-sense resistor value	R _{SENSE} = V _{Diff} / I _{MAX}	4 mΩ
P _{RSENSE}	Current-sense resistor power dissipation	R _{SENSE} x I _{MAX} ²	0.4 W
V _{OS} Error	Offset voltage error	(V _{OS} / V _{DIFF}) x 100	0.375%

Table 2. Accuracy and R_{SENSE} Power Dissipation vs Gain Setting

7.3.2 Programmable Gain Select

The device features a terminal-controlled gain selection in determining the device gain setting. Four discrete gain options are available (25 V/V, 50 V/V, 100 V/V, and 200 V/V) on the device and are selected based on the voltage levels applied to the gain-select terminals (GS0 and GS1). These terminals are typically fixed settings for most applications but the programmable gain feature can be used to adjust the gain setting to enable wider dynamic input range monitoring as well as to create an automatic gain control (AGC) network.

Table 3 shows the corresponding gain values and gain-select terminal values for the device.

Table 3. Gain Select Settings

GAIN	GS0	GS1
25 V/V	GND	GND
50 V/V	GND	V _S
100 V/V	Vs	GND
200 V/V	Vs	V _S

7.4 Device Functional Modes

7.4.1 Input Filtering

An obvious and straightforward location for filtering is at the device output; however, this location negates the advantage of the low output impedance of the internal buffer. The input then represents the best location for implementing external filtering. Figure 36 shows the typical implementation of the input filter for the device.

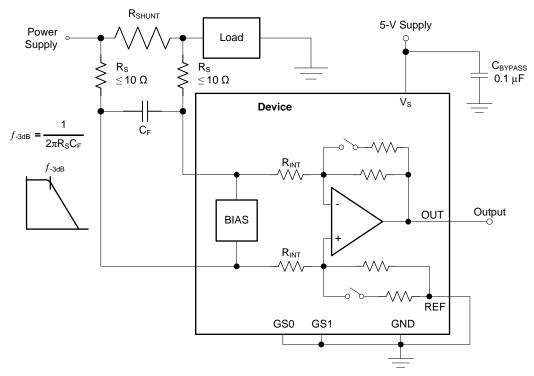
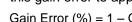



Figure 36. Input Filter

Care must be taken in the selection of the external filter component values because these components can affect device measurement accuracy. Placing external resistance in series with the input terminals creates an additional error so these resistors should be kept as low of a value as possible with a recommended maximum value of 10 Ω or less. Increasing the value of the input filter resistance beyond 10 Ω results in a smaller voltage signal present at the device input terminals than what is developed across the current-sense shunt resistor.

The internal bias network shown in Figure 36 creates a mismatch in the two input bias current paths when a differential voltage is applied between the input terminals. Under normal conditions, where no external resistance is added to the input paths, this mismatch of input bias currents has little effect on device operation or accuracy. However, when additional external resistance is added (such as for input filtering), the mismatch of input bias currents creates unequal voltage drops across these external components. The mismatched voltages result in a signal reaching the input terminals that is lower in value than the signal developed directly across the current-sensing resistor.

The amount of variance in the differential voltage present at the device input relative to the voltage developed at the shunt resistor is based both on the external series resistance value (R_S) and the internal input resistors (R_{INT}). The reduction of the shunt voltage reaching the device input terminals appears as a gain error when comparing the output voltage relative to the voltage across the shunt resistor. A factor can be calculated to determine the amount of gain error that is introduced by the addition of external series resistance.

7.4.2 Shutting Down the Device

Although the device does not have a shutdown terminal, the low-power consumption allows for the device to be powered from the output of a logic gate or transistor switch that can turn on and turn off the voltage connected to the device power-supply terminal.

However, in current-shunt monitoring applications, there is also a concern for how much current is drained from the shunt circuit in shutdown conditions. Evaluating this current drain involves considering the device simplified schematic in shutdown mode, as shown in Figure 37.

Figure 37. Shutting Down the Device

www.ti.com.cn

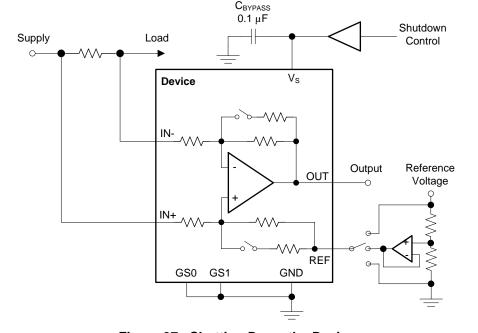
Device Functional Modes (continued)

The amount of error these external filter resistors introduce into the measurement can be calculated using the simplified gain error factor in Equation 1, where the gain error factor is calculated with Equation 2.

 $(1250 \times R_{INT})$

 $(1250 \times R_s) + (1250 \times R_{INT}) + (R_s \times R_{INT})$

50,000 Gain Error Factor = $(41 \times R_s) + 50,000$


Gain Error Factor =

where:

- R_{INT} is the internal input impedance, and
- R_S is the external series resistance. ٠

For example, using the gain error factor (Equation 1), a $10-\Omega$ series resistance results in a gain error factor of 0.992. The corresponding gain error is then calculated using Equation 3, resulting in a gain error of approximately 0.81% solely because of the external $10-\Omega$ series resistors. Using $100-\Omega$ filter resistors increases this gain error to approximately 7.58% from these resistors alone.

Gain Error (%) = 1 - Gain Error Factor

(2)

(3)

(1)

17

Device Functional Modes (continued)

Note that there is typically a 525-k Ω impedance (from the combination of the 500-k Ω feedback and 25-k Ω input resistors) from each device input to the REF terminal. The amount of current flowing through these terminals depends on the respective configuration. For example, if the REF terminal is grounded, calculating the effect of the 525-k Ω impedance from the shunt to ground is straightforward. However, if the reference or op amp is powered while the device is shut down, the calculation is direct. Instead of assuming 525 k Ω to ground, assume 525 k Ω to the reference voltage. If the reference or op amp is also shut down, some knowledge of the reference or op amp output impedance under shutdown conditions is required. For instance, if the reference source behaves similar to an open circuit when un-powered, little or no current flows through the 525-k Ω path.

7.4.3 Using the Device with Common-Mode Transients Above 36 V

With a small amount of additional circuitry, the device can be used in circuits subject to transients higher than 36 V (such as automotive applications). Use only zener diodes or zener-type transient absorbers (sometimes referred to as *transzorbs*); any other type of transient absorber has an unacceptable time delay. Start by adding a pair of resistors, as shown in Figure 38, as a working impedance for the zener. Keeping these resistors as small as possible is preferable, most often around 10 Ω . This value limits the impact on accuracy with the addition of these external components, as described in the *Input Filtering* section. Larger values can be used if necessary with the result having an impact on gain error. Because this circuit limits only short-term transients, many applications are satisfied with a 10- Ω resistor along with conventional zener diodes of the lowest power rating available. This combination uses the least amount of board space. These diodes can be found in packages as small as SOT-523 or SOD-523.

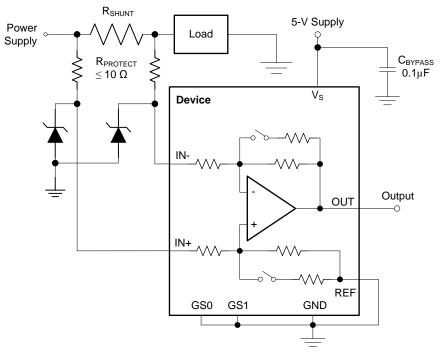


Figure 38. Device Transient Protection

8 Applications and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The INA225-Q1 measures the voltage developed across a current-sensing resistor when current passes through it. The ability to drive the reference terminal to adjust the functionality of the output signal offers multiple configurations discussed throughout this section.

8.2 Typical Applications

8.2.1 Microcontroller-Configured Gain Selection

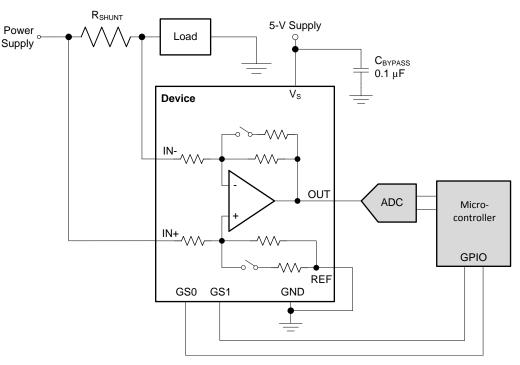


Figure 39. Microcontroller-Configured Gain Selection Schematic

8.2.1.1 Design Requirements

Figure 39 shows the typical implementation of the device interfacing with an analog-to-digital converter (ADC) and microcontroller.

8.2.1.2 Detailed Design Procedure

In this application, the device gain setting is selected and controlled by the microcontroller to ensure the device output is within the linear input range of the ADC. Because the output range of the device under a specific gain setting approaches the linear output range of the INA225-Q1 itself or the linear input range of the ADC, the microcontroller can adjust the device gain setting to ensure the signal remains within both the device and the ADC linear signal range.

Typical Applications (continued)

8.2.1.3 Application Curve

Figure 40 illustrates how the microcontroller can monitor the ADC measurements to determine if the device gain setting should be adjusted to ensure the output of the device remains within the linear output range as well as the linear input range of the ADC. When the output of the device rises to a level near the desired maximum voltage level, the microcontroller can change the GPIO settings connected to the G0 and G1 gain-select terminals to adjust the device gain setting, thus resulting in the output voltage dropping to a lower output range. When the input current increases, the output voltage increases again to the desired maximum voltage level. The microcontroller can again change the device gain setting to drop the output voltage back to a lower range.

Figure 40. Microcontroller-Configured Gain Selection Response

Typical Applications (continued)

8.2.2 Unidirectional Operation

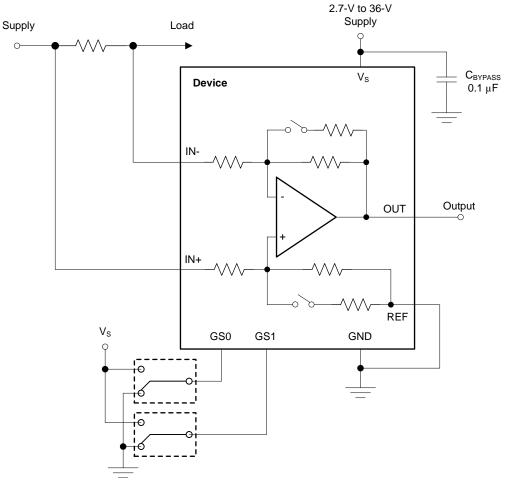


Figure 41. Unidirectional Application Schematic

8.2.2.1 Design Requirements

The device can be configured to monitor current flowing in one direction or in both directions, depending on how the REF terminal is configured. For measuring current in one direction, only the REF terminal is typically connected to ground as shown in Figure 41. With the REF terminal connected to ground, the output is low with no differential input signal applied. When the input signal increases, the output voltage at the OUT terminal increases above ground based on the device gain setting.

Typical Applications (continued)

8.2.2.2 Detailed Design Procedure

The linear range of the output stage is limited in how close the output voltage can approach ground under zero input conditions. Resulting from an internal node limitation when the REF terminal is grounded (unidirectional configuration) the device gain setting determines how close to ground the device output voltage can achieve when no signal is applied; see Figure 14. To overcome this internal node limitation, a small reference voltage (approximately 10 mV) can be applied to the REF terminal to bias the output voltage above this voltage level. The device output swing capability returns to the 10-mV saturation level with this small reference voltage present.

At the lowest gain setting, 25 V/V, the device is capable of accurately measuring input signals that result in output voltages below this 10-mV saturation level of the output stage. For these gain settings, a reference voltage can be applied to bias the output voltage above this lower saturation level to allow the device to monitor these smaller input signals. To avoid common-mode rejection errors, buffer the reference voltage connected to the REF terminal.

A less frequently-used output biasing method is to connect the REF terminal to the supply voltage, V_S. This method results in the output voltage saturating at 200 mV below the supply voltage when no differential input signal is present. This method is similar to the output saturated low condition with no input signal when the REF terminal is connected to ground. The output voltage in this configuration only responds to negative currents that develop negative differential input voltage relative to the device IN– terminal. Under these conditions, when the differential input signal increases negatively, the output voltage moves downward from the saturated supply voltage. The voltage applied to the REF terminal must not exceed the device supply voltage.

8.2.2.3 Application Curve

An example output response of a unidirectional configuration is shown in Figure 42. With the REF terminal connected directly to ground, the output voltage is biased to this zero output level. The output rises above the reference voltage for positive differential input signals but cannot fall below the reference voltage for negative differential input signals because of the grounded reference voltage.

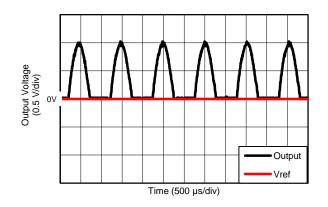


Figure 42. Unidirectional Application Output Response

Typical Applications (continued)

8.2.3 Bidirectional Operation

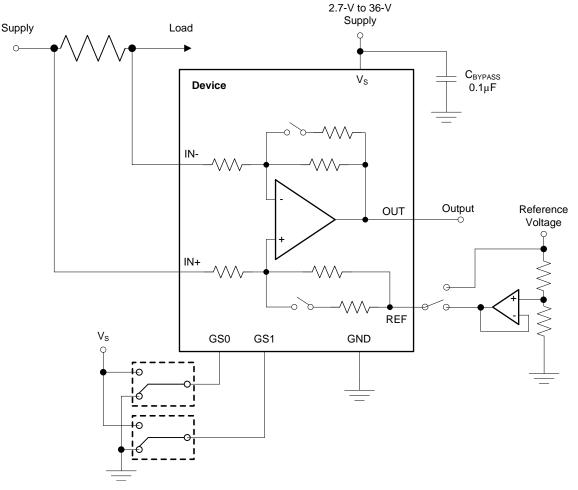


Figure 43. Bidirectional Application Schematic

8.2.3.1 Design Requirements

The device is a bidirectional, current-sense amplifier capable of measuring currents through a resistive shunt in two directions. This bidirectional monitoring is common in applications that include charging and discharging operations where the current flow-through resistor can change directions.

8.2.3.2 Detailed Design Procedure

The ability to measure this current flowing in both directions is enabled by applying a voltage to the REF terminal, as shown in Figure 43. The voltage applied to REF (V_{REF}) sets the output state that corresponds to the zero-input level state. The output then responds by increasing above V_{REF} for positive differential signals (relative to the IN–terminal) and responds by decreasing below V_{REF} for negative differential signals. This reference voltage applied to the REF terminal can be set anywhere between 0 V to V_{S} . For bidirectional applications, V_{REF} is typically set at mid-scale for equal range in both directions. In some cases, however, V_{REF} is set at a voltage other than half-scale when the bidirectional current is non-symmetrical.

Typical Applications (continued)

8.2.3.3 Application Curve

An example output response of a bidirectional configuration is shown in Figure 44. With the REF terminal connected to a reference voltage, 2.5 V in this case, the output voltage is biased upwards by this reference level. The output rises above the reference voltage for positive differential input signals and falls below the reference voltage for negative differential input signals.

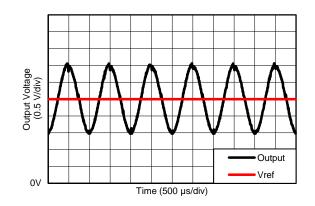


Figure 44. Bidirectional Application Output Response

9 Power Supply Recommendations

The input circuitry of the device can accurately measure signals on common-mode voltages beyond its power supply voltage, V_S . For example, the voltage applied to the V_S power supply terminal can be 5 V, whereas the load power-supply voltage being monitored (the common-mode voltage) can be as high as +36 V. Note also that the device can withstand the full -0.3-V to +36-V range at the input terminals, regardless of whether the device has power applied or not.

Power-supply bypass capacitors are required for stability and should be placed as closely as possible to the supply and ground terminals of the device. A typical value for this supply bypass capacitor is 0.1 μ F. Applications with noisy or high-impedance power supplies may require additional decoupling capacitors to reject power-supply noise.

10 Layout

10.1 Layout Guidelines

- Connect the input terminals to the sensing resistor using a Kelvin or 4-wire connection. This connection technique ensures that only the current-sensing resistor impedance is detected between the input terminals. Poor routing of the current-sensing resistor commonly results in additional resistance present between the input terminals. Given the very low ohmic value of the current resistor, any additional high-current carrying impedance can cause significant measurement errors.
- The power-supply bypass capacitor should be placed as closely as possible to the supply and ground terminals. The recommended value of this bypass capacitor is 0.1 µF. Additional decoupling capacitance can be added to compensate for noisy or high-impedance power supplies.

10.2 Layout Example

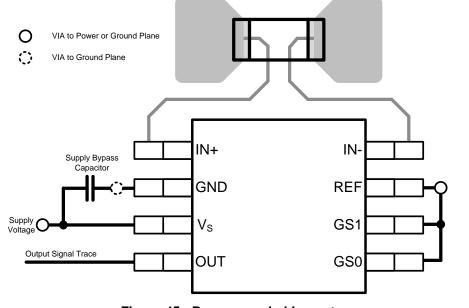


Figure 45. Recommended Layout

NOTE

The layout shown has REF connected to ground for unidirectional operation. Gain-select terminals (GS0 and GS1) are also connected to ground, indicating a 25-V/V gain setting.

TEXAS INSTRUMENTS

www.ti.com.cn

11 器件和文档支持

11.1 相关文档

相关文档如下:

• 《INA225EVM 用户指南》, 文献编号: SBOU140

11.2 商标

All trademarks are the property of their respective owners.

11.3 静电放电警告

ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序,可能会损坏集成电路。

▲ ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

11.4 术语表

SLYZ022 — TI 术语表。

这份术语表列出并解释术语、首字母缩略词和定义。

12 机械封装和可订购信息

以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对 本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。

重要声明

德州仪器(TI)及其下属子公司有权根据 JESD46 最新标准,对所提供的产品和服务进行更正、修改、增强、改进或其它更改,并有权根据 JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息,并验证这些信息是否完整且是最新的。所有产品的销售 都遵循在订单确认时所提供的TI 销售条款与条件。

TI保证其所销售的组件的性能符合产品销售时TI半导体产品销售条件与条款的适用规范。仅在TI保证的范围内,且TI认为有必要时才会使用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。

TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,客户应提供充分的设计与操作安全措施。

TI不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权 限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。

对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行 复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。

在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明 示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。

客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而对 TI 及其代理造成的任何损失。

在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。

TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。

只有那些 TI 特别注明属于军用等级或"增强型塑料"的 TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有法律和法规要求。

TI 己明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要求,TI不承担任何责任。

	产品	应用		
数字音频	www.ti.com.cn/audio	通信与电信	www.ti.com.cn/telecom	
放大器和线性器件	www.ti.com.cn/amplifiers	计算机及周边	www.ti.com.cn/computer	
数据转换器	www.ti.com.cn/dataconverters	消费电子	www.ti.com/consumer-apps	
DLP® 产品	www.dlp.com	能源	www.ti.com/energy	
DSP - 数字信号处理器	www.ti.com.cn/dsp	工业应用	www.ti.com.cn/industrial	
时钟和计时器	www.ti.com.cn/clockandtimers	医疗电子	www.ti.com.cn/medical	
接口	www.ti.com.cn/interface	安防应用	www.ti.com.cn/security	
逻辑	www.ti.com.cn/logic	汽车电子	www.ti.com.cn/automotive	
电源管理	www.ti.com.cn/power	视频和影像	www.ti.com.cn/video	
微控制器 (MCU)	www.ti.com.cn/microcontrollers			
RFID 系统	www.ti.com.cn/rfidsys			
OMAP应用处理器	www.ti.com/omap			
无线连通性	www.ti.com.cn/wirelessconnectivity	德州仪器在线技术支持社区	www.deyisupport.com	

邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122 Copyright © 2015, 徳州仪器半导体技术(上海)有限公司

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
INA225AQDGKRQ1	ACTIVE	VSSOP	DGK	8	2500	RoHS & Green	NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	IAAQ	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

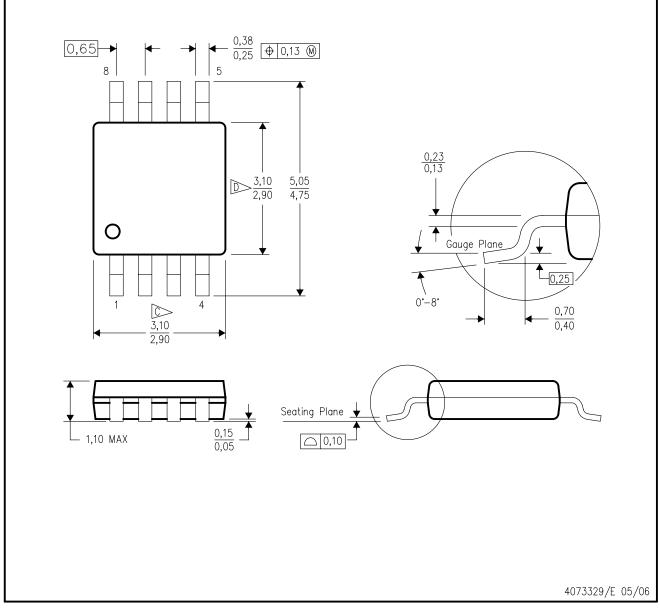
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <= 1000ppm threshold. Antimony trioxide based flame retardants must also meet the <= 1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.


(⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

DGK (S-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.

- D Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

DGK (S-PDSO-G8)

PLASTIC SMALL OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

重要声明和免责声明

Ⅱ 均以"原样"提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

所述资源可供专业开发人员应用TI产品进行设计使用。您将对以下行为独自承担全部责任:(1)针对您的应用选择合适的TI产品;(2)设计、 验证并测试您的应用;(3)确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI对您使用 所述资源的授权仅限于开发资源所涉及TI产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权 许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI及其代表造成的损害。

TI所提供产品均受TI的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。

邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2020 德州仪器半导体技术(上海)有限公司