www.ti.com.cn ZHCS371 – SEPTEMBER 2011 ## 高速差分线路接收器 查询样品: SN65LVDS31-EP ### 特性 - 满足或者超过ANSI TIA/EIA-644 标准 - 具有**350 mV** 的典型输出电压和**100-**Ω 负载的低电 压差分信号传输 - 典型输出电压上升和下降次数为 500 ps (400 Mbps时) - 典型传播时延 1.7 ns - 3.3-V 单电源供电下运行 - 200 MHz时,每个驱动器功率耗散典型值 25 mW - 当被禁止或者 $V_{CC} = 0$ 时,驱动器在高阻抗 - 总线终端ESD保护超过 8 kV - · 低电压 TTL (LVTTL) 逻辑输入电平 - 与AM26LS31, MC3487, 和 µA9638引脚兼容 - 用于有冗余要求的空间和高可靠性应用的冷备份 #### 支持国防、航天和医疗应用 - 受控基线 - 一个组装/测试场所 - 一个制造场所 - 在军用温度范围内 (-55°C/125°C)工作 - 产品生命周期有所延长 - 拓展的产品改变通知 - 产品可追溯性 #### 说明 SN65LVDS31 是一款差分线路驱动器,此差分驱动器具有低电压差分信号传输 (LVDS)的电气特性。 此项信号传输技术降低了 5-V 差分标准电平的输出电压电平 (例如 TIA/EIA-422B) 以减少功耗,增加交换速度并允许一个 3.3 V供电轨的操作。 当被启用时,此驱动器将向 100-Ω负载传送一个大小为 247 mV的最小差分输出电压。 这个设备和信号传输技术的目标应用是在点到点和多点间(一个驱动器和多个接收器)通过接近 **100 Ω**的受控阻抗介质传输数据。 传输介质可以是印刷电路板印制线、背板或者电缆。 数据传输的最终速率和距离取决于介质的衰减特性和对环境的噪声耦合。 SN65LVDS31 器件工作温度范围 -55°C 至 125°C。 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. #### ORDERING INFORMATION⁽¹⁾ | T_A | PACKAGE ⁽²⁾ | ORDERABLE PART
NUMBER | TOP-SIDE MARKING | VID NUMBER | | |----------------|------------------------|--------------------------|------------------|----------------|--| | –55°C to 125°C | SOIC-D | SN65LVDS31MDREP | LVDS31EP | V62/07627-01XE | | - (1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com. - (2) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. #### Logic Symbol This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. #### SN65LVDS31 Logic Diagram (Positive Logic) www.ti.com.cn ZHCS371 - SEPTEMBER 2011 #### **FUNCTION TABLE** Table 1. SN65LVDS31⁽¹⁾ | INPUT | ENA | BLES | OUTPUTS | | | |--------------|-----|------|---------|---|--| | Α | G | G | Y | Z | | | Н | Н | Χ | Н | ٦ | | | L | Н | Χ | L | Н | | | Н | Х | L | Н | L | | | L | Χ | L | L | Н | | | X | L | Н | Z | Z | | | Open | Н | Χ | L | Н | | | Open
Open | X | L | L | Н | | (1) H = high level, L = low level, X = irrelevant, Z = high impedance (off) #### **EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS** ZHCS371 – SEPTEMBER 2011 www.ti.com.cn #### **ABSOLUTE MAXIMUM RATINGS**(1) over operating free-air temperature range (unless otherwise noted) | | | UNIT | |------------------|--|-----------------------------------| | V_{CC} | Supply voltage range ⁽²⁾ | –0.5 V to 4 V | | V_{I} | Input voltage range | –0.5 V to V _{CC} + 0.5 V | | | Continuous total power dissipation | See Dissipation Rating Table | | | Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds | 260°C | | θ_{JA} | Thermal resistance, junction-to-ambient | 73°C/W | | θ_{JC} | Thermal resistance, junction-to-case | 36.9°C/W | | T _{stg} | Storage temperature range | -65°C to 150°C | ⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. #### **DISSIPATION RATING TABLE** | PACKAGE | T _A ≤ 25°C | DERATING FACTOR ⁽¹⁾ | T _A = 70°C | T _A = 85°C | T _A = 125°C | |---------|-----------------------|--------------------------------|-----------------------|-----------------------|------------------------| | | POWER RATING | ABOVE T _A = 25°C | POWER RATING | POWER RATING | POWER RATING | | D (16) | 950 mW | 7.6 mW/°C | 608 mW | 494 mW | 190 mW | ⁽¹⁾ This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow. #### RECOMMENDED OPERATING CONDITIONS | | | MIN | NOM | MAX | UNIT | |----------------|--------------------------------|-------------|-----|-----|------| | V_{CC} | Supply voltage | 3 | 3.3 | 3.6 | V | | V_{IH} | High-level input voltage | 2 | | | V | | V_{IL} | Low-level input voltage | | | 0.8 | V | | T _A | Operating free-air temperature | – 55 | | 125 | °C | #### **ELECTRICAL CHARACTERISTICS** over operating free-air temperature range (unless otherwise noted) | | PARAMETER | TEST (| CONDITIONS | MIN | TYP ⁽¹⁾ | MAX | UNIT | |---------------------|--|--------------------------------------|------------------------------|-------|--------------------|-------|------| | V _{OD} | Differential output voltage magnitude | $R_L = 100 \Omega$, | See Figure 2 | 247 | 340 | 454 | mV | | ΔV_{OD} | Change in differential output voltage magnitude between logic states | $R_L = 100 \Omega$, | See Figure 2 | -50 | | 50 | mV | | V _{OC(SS)} | Steady-state common-mode output voltage | See Figure 3 | | 1.125 | 1.2 | 1.375 | V | | $\Delta V_{OC(SS)}$ | Change in steady-state common-mode output voltage between logic states | See Figure 3 | | -50 | | 50 | mV | | V _{OC(PP)} | Peak-to-peak common-mode output voltage | See Figure 3 | | | 50 | | mV | | | | $V_I = 0.8 \text{ V or 2 V},$ | Enabled, No load | | 9 | 20 | | | I _{CC} | Supply current | $V_I = 0.8 \text{ or } 2 \text{ V},$ | $R_L = 100 \Omega$, Enabled | | 25 | 35 | mA | | | | $V_I = 0$ or V_{CC} , | Disabled | | 0.25 | 1 | | | I _{IH} | High-level input current | V _{IH} = 2 | | | 4 | 20 | μΑ | | I _{IL} | Low-level input current | V _{IL} = 0.8 V | | | 0.1 | 10 | μΑ | | | Chart aircuit autout aureant | $V_{O(Y)}$ or $V_{O(Z)} = 0$ | | | -4 | -24 | mA | | los | Short-circuit output current | V _{OD} = 0 | | | | ±12 | mA | | I _{OZ} | High-impedance output current | V _O = 0 or 2.4 V | | | | ±1 | μΑ | | I _{O(OFF)} | Power-off output current | V _{CC} = 0, | V _O = 2.4 V | | | ±4 | μΑ | | Ci | Input capacitance | | | | 3 | | pF | ⁽¹⁾ All typical values are at $T_A = 25^{\circ}C$ and with $V_{CC} = 3.3 \text{ V}$. ⁽²⁾ All voltages, except differential I/O bus voltages, are with respect to the network ground terminal. www.ti.com.cn ZHCS371 - SEPTEMBER 2011 #### SWITCHING CHARACTERISTICS over recommended operating conditions (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | MIN | TYP ⁽¹⁾ | MAX | UNIT | |--------------------|---|----------------------------------|-----|--------------------|-----|------| | t _{PLH} | Propagation delay time, low-to-high-level output | | 0.5 | 1.4 | 4 | ns | | t _{PHL} | Propagation delay time, high-to-low-level output | | 1 | 1.7 | 4.5 | ns | | t _r | Differential output signal rise time (20% to 80%) | $R_L = 100 \Omega, C_L = 10 pF,$ | | 0.5 | | ns | | t _f | Differential output signal fall time (80% to 20%) | See Figure 2 | | 0.5 | | ns | | t _{sk(p)} | Pulse skew (t _{PHL} - t _{PLH}) | | | 0.3 | 0.6 | ns | | t _{sk(o)} | Channel-to-channel output skew ⁽²⁾ | | | 0.3 | 0.8 | ns | | t _{PZH} | Propagation delay time, high-impedance-to-high-level output | | | 5.4 | 17 | ns | | t_{PZL} | Propagation delay time, high-impedance-to-low-level output | Coo Figure 4 | | 2.5 | 17 | ns | | t _{PHZ} | Propagation delay time, high-level-to-high-impedance output | See Figure 4 | | 8.1 | 18 | ns | | t _{PLZ} | Propagation delay time, low-level-to-high-impedance output | | | 7.3 | 17 | ns | - (1) All typical values are at $T_A = 25^{\circ}C$ and with $V_{CC} = 3.3 \text{ V}$. (2) $t_{sk(o)}$ is the maximum delay time difference between drivers on the same device. #### PARAMETER MEASUREMENT INFORMATION Figure 1. Voltage and Current Definitions - NOTES: A. All input pulses are supplied by a generator having the following characteristics: t_r or $t_f \le 1$ ns, pulse repetition rate (PRR) = 50 Mpps, pulse width = 10 ± 0.2 ns. - B. C_I includes instrumentation and fixture capacitance within 6 mm of the D.U.T. Figure 2. Test Circuit, Timing, and Voltage Definitions for the Differential Output Signal ZHCS371 – SEPTEMBER 2011 www.ti.com.cn #### PARAMETER MEASUREMENT INFORMATION (continued) - NOTES: A. All input pulses are supplied by a generator having the following characteristics: t_f or $t_f \le 1$ ns, pulse repetition rate (PRR) = 50 Mpps, pulse width = 10 ± 0.2 ns. - B. C_L includes instrumentation and fixture capacitance within 6 mm of the D.U.T. - C. The measurement of V_{OC(PP)} is made on test equipment with a –3-dB bandwidth of at least 300 MHz. Figure 3. Test Circuit and Definitions for the Driver Common-Mode Output Voltage - NOTES: A. All input pulses are supplied by a generator having the following characteristics: t_r or $t_f < 1$ ns, pulse repetition rate (PRR) = 0.5 Mpps, pulse width = 500 ± 10 ns. - B. C_L includes instrumentation and fixture capacitance within 6 mm of the D.U.T. Figure 4. Enable-/Disable-Time Circuit and Definitions www.ti.com.cn ZHCS371 - SEPTEMBER 2011 #### **TYPICAL CHARACTERISTICS** # **LOW-TO-HIGH PROPAGATION DELAY TIME** FREE-AIR TEMPERATURE 2.8 2.6 V_{CC} = 3.3 V #### **HIGH-TO-LOW PROPAGATION DELAY TIME** ZHCS371 – SEPTEMBER 2011 www.ti.com.cn # TEXAS INSTRUMENTS #### APPLICATION INFORMATION The SN65LVDS31 is generally used as a building block for high-speed point-to-point data transmission where ground differences are less than 1 V. The SN65LVDS31 can interoperate with RS-422, PECL, and IEEE-P1596. Drivers/receivers approach ECL speeds without the power and dual supply requirements. A. This parameter is the percentage of distortion of the unit interval (UI) with a pseudorandom data pattern. Figure 8. Typical Transmission Distance Versus Signaling Rate NOTES: A. Place a 0.1-μF and a 0.001-μF Z5U ceramic, mica, or polystyrene dielectric, 0805 size, chip capacitor between V_{CC} and the ground plane. The capacitors should be located as close as possible to the device terminals. B. Unused enable inputs should be tied to $V_{\mbox{\footnotesize{CC}}}$ or GND, as appropriate. Figure 9. Typical Application Circuit Schematic www.ti.com.cn ZHCS371 – SEPTEMBER 2011 - NOTES: A. Resistors are leadless, thick film (0603), 5% tolerance. - B. Decoupling capacitance is not shown, but recommended. - C. V_{CC} is 3 V to 3.6 V. - D. The differential output voltage of the 'LVDS31 can exceed that specified by IEEE1394. Figure 10. 100-Mbps IEEE 1394 Transceiver - A. Place a 0.1-μF Z5U ceramic, mica, or polystyrene dielectric, 0805 size, chip capacitor between V_{CC} and the ground plane. The capacitor should be located as close as possible to the device terminals. - B. Unused enable inputs should be tied to V_{CC} or GND, as appropriate. Figure 11. Operation With 5-V Supply #### **COLD SPARING** Systems using cold sparing have a redundant device electrically connected without power supplied. To support this configuration, the spare must present a high-input impedance to the system so that it does not draw appreciable power. In cold sparing, voltage may be applied to an I/O before and during power up of a device. When the device is powered off, V_{CC} must be clamped to ground and the I/O voltages applied must be within the specified recommended operating conditions. #### RELATED INFORMATION IBIS modeling is available for this device. Contact the local TI sales office or the TI Web site at www.ti.com for more information. For more application guidelines, see the following documents: - Low-Voltage Differential Signaling Design Notes (SLLA014) - Interface Circuits for TIA/EIA-644 (LVDS) (SLLA038) - Reducing EMI With LVDS (SLLA030) - Slew Rate Control of LVDS Circuits (SLLA034) - Using an LVDS Receiver With RS-422 Data (SLLA031) - Evaluating the LVDS EVM (SLLA033) #### PACKAGE OPTION ADDENDUM 11-Dec-2020 #### PACKAGING INFORMATION www.ti.com | Orderable Device | Status | Package Type | Package
Drawing | Pins | Package
Qty | Eco Plan | Lead finish/
Ball material | MSL Peak Temp | Op Temp (°C) | Device Marking
(4/5) | Samples | |------------------|--------|--------------|--------------------|------|----------------|--------------|-------------------------------|--------------------|--------------|-------------------------|---------| | SN65LVDS31MDREP | ACTIVE | SOIC | D | 16 | 2500 | RoHS & Green | NIPDAU | Level-1-260C-UNLIM | -55 to 125 | LVDS31EP | Samples | | V62/07627-01XE | ACTIVE | SOIC | D | 16 | 2500 | RoHS & Green | NIPDAU | Level-1-260C-UNLIM | -55 to 125 | LVDS31EP | Samples | (1) The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. - (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. - (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. 11-Dec-2020 ## D (R-PDS0-G16) #### PLASTIC SMALL OUTLINE NOTES: - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side. - E. Reference JEDEC MS-012 variation AC. ## D (R-PDSO-G16) ## PLASTIC SMALL OUTLINE NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. #### 重要声明和免责声明 TI 均以"原样"提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。 所述资源可供专业开发人员应用TI产品进行设计使用。您将对以下行为独自承担全部责任: (1)针对您的应用选择合适的TI产品; (2)设计、验证并测试您的应用; (3)确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI对您使用所述资源的授权仅限于开发资源所涉及TI产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI及其代表造成的损害。 TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。 邮寄地址: 上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2020 德州仪器半导体技术(上海)有限公司