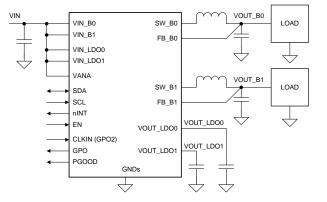


LP87332B-Q1


ZHCSGT6-JUNE 2017

LP87332B-Q1 双路高电流降压转换器和双路线性稳压器

1 特性

- 符合 AEC-Q100 标准, 其中包括以下内容:
 - 器件温度 1 级: -40℃ 至 +125℃ 的环境运行温度范围
- 输入电压: 2.8V 至 5.5V
- 两个高效降压直流/直流转换器:
 - 输出电压: 0.7V 至 3.36V
 - 最大输出电流 3A
 - 可编程输出电压转换率范围: 0.5mV/μs 至 10mV/μs
 - 2MHz 开关频率
 - 用于降低 EMI 的扩频模式和相位交错
- 两个线性稳压器:
 - 输入电压: 2.5V 至 5.5V
 - 输出电压: 0.8V 至 3.3V
 - 最大输出电流 300mA
- 可配置通用输出信号(GPO、GPO2)
- 具有可编程屏蔽的中断功能
- 可编程电源正常信号 (PGOOD)
- 输出短路和过载保护
- 过热警告和保护
- 过压保护 (OVP) 和欠压锁定 (UVLO)
- 具有可湿性侧面的 28 引脚 5mm × 5mm VQFN 封 装

简化原理图

Copyright © 2017, Texas Instruments Incorporate

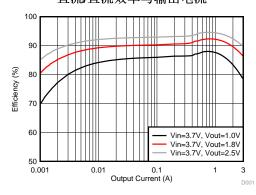
2 应用

- 汽车音响主机和组合仪表
- 汽车摄像头模块
- 环视系统 ECU
- 雷达系统 ECU
- 汽车显示屏

3 说明

LP87332B-Q1 专为满足的电源管理要求而设计,这些处理器和平台用于汽车应用。该器件包含两个降压直流/直流转换器和两个线性稳压器以及通用数字输出信号。该器件由 I²C 兼容串行接口和使能信号进行控制。

自动 PWM/PFM(AUTO 模式)操作可在较宽输出电流范围内最大限度地提高效率。LP87332B-Q1 支持远程电压感应,可补偿稳压器输出与负载点 (POL) 之间的 IR 压降,从而提高输出电压的精度。此外,可以强制开关时钟进入 PWM 模式以及将其与外部时钟同步,从而最大限度地降低干扰。


LP87332B-Q1 器件支持可编程启动和关断延迟与排序 (包括与使能信号同步的 GPO 信号)。在启动和电压 变化期间,器件会对输出转换率进行控制,从而最大限 度地减小输出电压过冲和浪涌电流。

器件信息

器件型号	封装	封装尺寸 (标称值)
LP87332B-Q1	VQFN (28)	5.00mm × 5.00mm

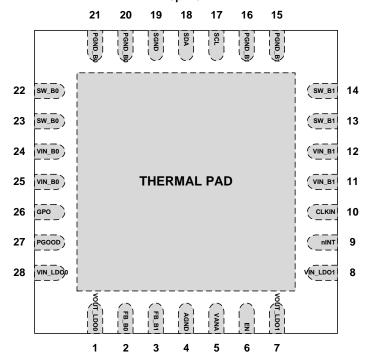
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附录。

直流/直流效率与输出电流

目录

1	特性		1
2	应用]	1
3	说明]	1
4	修订		<u>2</u>
5	Pin	Configuration and Functions	3
6		cifications	
	6.1	Absolute Maximum Ratings	
	6.2	ESD Ratings	5
	6.3	Recommended Operating Conditions	5
	6.4	Thermal Information	6
	6.5	Electrical Characteristics	6
	6.6	I ² C Serial Bus Timing Parameters	11
	6.7	Typical Characteristics	13
7	Deta	ailed Description	14
	7.1	Overview	14
	7.2	Functional Block Diagram	15
	7.3	Feature Description	15
	7.4	Device Functional Modes	33

	7.5	Programming	34
	7.6	Register Maps	37
8	App	lication and Implementation	55
	8.1	Application Information	55
	8.2	Typical Application	55
9	Pow	er Supply Recommendations	63
10	Lay	out	63
	10.1	Layout Guidelines	63
	10.2	Layout Example	65
11	器件	-和文档支持	66
	11.1	器件支持	66
	11.2	接收文档更新通知	66
	11.3	社区资源	66
	11.4	商标	66
	11.5	静电放电警告	66
	11.6	Glossary	66
12	机械	《、封装和可订购信息	66


4 修订历史记录

日期	修订版本	说明
2017年6月	*	初始发行版

www.ti.com.cn ZHCSGT6-JUNE 2017

5 Pin Configuration and Functions

Pin Functions

	PIN Functions					
	PIN	TYPE ⁽¹⁾	DESCRIPTION			
NUMBER	NAME	I I I FE (/	DESCRIPTION			
1	VOUT_LDO0	P/O	LDO0 output. If LDO0 is not used, leave the pin floating.			
2	FB_B0	Α	Output voltage feedback (positive) for Buck 0			
3	FB_B1	Α	Output voltage feedback (positive) for Buck 1			
4	AGND	G	Ground			
5	VANA	P/I	Supply voltage for analog and digital blocks. Must be connected to same node with VIN_Bx.			
6	EN	D/I	Programmable enable signal for regulators and GPOs. If the pin is not used, leave the pin floating.			
7	VOUT_LDO1	P/O	LDO1 output. If LDO1 is not used, leave the pin floating.			
8	VIN_LDO1	P/I	Power input for LDO1. If LDO1 is not used, connect the pin to VANA.			
9	nINT	D/O	Open-drain interrupt output. Active LOW. If the pin is not used, connect the pin to ground.			
10	CLKIN	D/I/O	External clock input. Alternative function is general-purpose digital output (GPO2). If the pin is not used, leave the pin floating.			
11, 12	VIN_B1	P/I	Input for Buck 1. The separate power pins VIN_Bx are not connected together internally - VIN_Bx pins must be connected together in the application and be locally bypassed.			
13, 14	SW_B1	P/O	Buck 1 switch node. If the Buck 1 is not used, leave the pin floating.			
15, 16	PGND_B1	P/G	Power ground for Buck 1			
17	SCL	D/I	Serial interface clock input for I ² C access. Connect a pullup resistor. If the I ² C interface is not used, connect the pin to Ground.			
18	SDA	D/I/O	Serial interface data input and output for I ² C access. Connect a pullup resistor. If the I ² C interface is not used, connect the pin to Ground.			
19	SGND	G	Ground			
20, 21	PGND_B0	P/G	Power ground for Buck 0			

(1) A: Analog Pin, D: Digital Pin, G: Ground Pin, P: Power Pin, I: Input Pin, O: Output Pin

Pin Functions (continued)

	PIN	TYPE ⁽¹⁾	DECEDIDATION		
NUMBER	NAME	I I PE'	DESCRIPTION		
22, 23	SW_B0	P/O	Buck 0 switch node. If the Buck 0 is not used, leave the pin floating.		
24, 25	VIN_B0	P/I	out for Buck 0. The separate power pins VIN_Bx are not connected together internally - N_Bx pins must be connected together in the application and be locally bypassed.		
26	GPO	D/O	General-purpose digital output. If the pin is not used, leave the pin floating.		
27	PGOOD	D/O	Power-good indication signal. If the pin is not used, leave the pin floating.		
28	VIN_LDO0	P/I	ower input for LDO0. If LDO0 is not used, connect the pin to VANA.		
Thermal Pad	_	_	Connect to PCB ground plane using multiple vias for good thermal performance.		

6 Specifications

www.ti.com.cn

6.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted) $^{(1)}$ $^{(2)}$

		MIN	MAX	UNIT
VIN_Bx, VANA	Voltage on power connections (must use the same input supply)	-0.3	6	V
VIN_LDOx	Voltage on power connections	-0.3	6	V
SW_Bx	Voltage on buck switch nodes	-0.3	(VIN_Bx + 0.3 V) with 6-V maximum	V
FB_Bx	Voltage on buck voltage sense nodes	-0.3	(VANA + 0.3 V) with 6-V maximum	V
VOUT_LDOx	Voltage on LDO output	-0.3	(VIN_LDOx + 0.3 V) with 6-V maximum	V
SDA, SCL, nINT, EN	Voltage on logic pins (input or output pins)	-0.3	6	V
PGOOD, GPO, CLKIN (GPO2)	Voltage on logic pins (input or output pins)	-0.3	(VANA + 0.3 V) with 6-V maximum	V
T _{J-MAX}	Junction temperature	-40	150	
T _{stg}	Storage temperature	-65	150	°C
Maximum lead temperat	ture (soldering, 10 seconds)		260	

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to network ground.

6.2 ESD Ratings

	-			VALUE	UNIT
V _(ESD) Electrostatic discharge Charge		Human-body model (HBM), per AEC Q100-002 ⁽¹⁾		±2000	
	Electrostatic discharge	Charmed devices model (CDM) man AFC	All pins	±500	\/
		Corner pins (1, 7, 8, 14, 15, 21, 22, 28)	±750	V	

⁽¹⁾ AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
INPUT VOLTAGE				
VIN_Bx, VANA	Voltage on power connections (must use the same input supply)	2.8	5.5	V
VIN_LDOx	Voltage on LDO inputs	2.5	5.5	V
EN, nINT	Voltage on logic pins (input or output pins)	0	5.5	V
CLKIN	Voltage on logic pins (input pin)	0	VANA with 5.5-V maximum	V
PGOOD, GPO, GPO2	Voltage on logic pins (output pins)	0	VANA	V
	Voltage on I2C interface, Standard (100 kHz), Fast (400 kHz), Fast+ (1 MHz), and High-Speed (3.4 MHz) Modes	0	1.95	V
SCL, SDA	Voltage on I2C interface, Standard (100 kHz), Fast (400 kHz), and Fast+ (1 MHz) Modes	0	VANA with 3.6-V maximum	V
TEMPERATURE				
T _J	Junction temperature	-40	140	°C
T _A	Ambient temperature	-40	125	°C

TEXAS INSTRUMENTS

6.4 Thermal Information

		LP87332B-Q1	
	THERMAL METRIC ⁽¹⁾	RHD (VQFN)	UNIT
		28 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	36.7	°C/W
$R_{\theta JCtop}$	Junction-to-case (top) thermal resistance	26.6	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	8.9	°C/W
ΨЈТ	Junction-to-top characterization parameter	0.4	°C/W
ΨЈВ	Junction-to-board characterization parameter	8.8	°C/W
$R_{\theta JCbot}$	Junction-to-case (bottom) thermal resistance	2.2	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application note.

6.5 Electrical Characteristics

Limits apply over the junction temperature range $-40^{\circ}\text{C} \le T_{\text{J}} \le +140^{\circ}\text{C}$, specified V_{VANA} , $V_{\text{VIN_Bx}}$, $V_{\text{VIN_LDOx}}$, $V_{\text{VOUT_Bx}}$, $V_{\text{VOUT_BDOx}}$ and I_{OUT} range, unless otherwise noted. Typical values are at $T_{\text{J}} = 25^{\circ}\text{C}$, $V_{\text{VANA}} = V_{\text{VIN_Bx}} = V_{\text{VIN_LDOx}} = 3.7 \text{ V}$, and $V_{\text{OUT}} = 1 \text{ V}$, unless otherwise noted⁽¹⁾ (2).

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
EXTERNA	AL COMPONENTS					
C _{IN_BUCK}	Input filtering capacitance for buck regulators	Effective capacitance, connected from VIN_Bx to PGND_Bx	1.9	10		μF
C _{OUT_BUC}	Output filtering capacitance for buck regulators	Effective capacitance	10	22	500	μF
C _{POL_BUC}	Point-of-load (POL) capacitance for buck regulators	Optional POL capacitance		22		μF
C _{OUT} - TOTAL_BU CK	Buck output capacitance, total (local and POL)	Total output capacitance			500	μF
C _{IN_LDO}	Input filtering capacitance for LDO regulators	Effective capacitance, connected from VIN_LDOx to AGND. $C_{\text{IN_LDO}}$ must be at least two times larger than $C_{\text{OUT_LDO}}$	0.6	2.2		μF
C _{OUT_LDO}	Output filtering capacitance for LDO regulators	Effective capacitance	0.4	1	2.7	μF
ESR _C	Input and output capacitor ESR	[1-10] MHz		2	10	$m\Omega$
	Inductor	Inductance of the inductor		0.47		
L	maucioi	inductance of the inductor	-30%		30%	μH
DCR _L	Inductor DCR			25		mΩ
BUCK RE	GULATORS					
$V_{(VIN_Bx)}, \ V_{(VANA)}$	Input voltage range	VIN_Bx and VANA pins must be connected to the same supply line	2.8	3.7	5.5	V
		Programmable voltage range	0.7	1	3.36	V
V	Output voltage	Step size, 0.7 V ≤ V _{OUT} < 0.73 V		10		
V_{OUT_Bx}	Output voltage	Step size, 0.73 V ≤ V _{OUT} < 1.4 V		5		mV
		Step size, 1.4 V ≤ V _{OUT} ≤ 3.36 V		20		
I _{OUT_Bx}	Output current	Output current			3 ⁽³⁾	Α

⁽¹⁾ All voltage values are with respect to network ground.

⁽²⁾ Minimum (MIN) and Maximum (MAX) limits are specified by design, test, or statistical analysis. Typical (TYP) numbers are not verified, but do represent the most likely norm.

⁽³⁾ The maximum output current can be limited by the forward current limit I_{LIM FWD}. The power dissipation inside the die increases the junction temperature and limits the maximum current depending of the length of the current pulse, efficiency, board and ambient temperature.

Electrical Characteristics (continued)

Limits apply over the junction temperature range $-40^{\circ}\text{C} \le T_{J} \le +140^{\circ}\text{C}$, specified V_{VANA} , V_{VIN_Bx} , V_{VIN_LDOx} , V_{VOUT_Bx} , V_{VOUT_Bx} , V_{VOUT_LDOx} and I_{OUT} range, unless otherwise noted. Typical values are at $T_{J} = 25^{\circ}\text{C}$, $V_{VANA} = V_{VIN_Bx} = V_{VIN_LDOx} = 3.7$ V, and $V_{OUT} = 1$ V, unless otherwise noted⁽¹⁾ (2).

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Input and Output voltage difference	Minimum voltage between $V_{(VIN_Bx)}$ and V_{OUT} to fulfill the electrical characteristics	0.8			V
		Force PWM mode, V _{OUT} < 1 V	-20		20	mV
	DC output voltage	Force PWM mode, V _{OUT} ≥ 1 V	-2%		2%	
V _{OUT_Bx_}	accuracy, includes voltage reference, DC load and line regulations,	PFM mode, V _{OUT} < 1 V, the average output voltage level is increased by max. 20 mV	–20mV		40mV	mV
	process and temperature	PFM mode, V _{OUT} ≥ 1 V, the average output voltage level is increased by max. 20 mV	-2%		2% + 20 mV	
	Pinnla valtaga	PWM mode, L = 0.47 µH		10		m\/
	Ripple voltage	PFM mode, $L = 0.47 \mu H$		25		mV_{p-p}
DC_{LNR}	DC line regulation	I _{OUT} = 1 A		±0.05		%/V
DC_{LDR}	DC load regulation in PWM mode	$V_{OUT_Bx} = 1 \text{ V}, I_{OUT} \text{ from 0 to } I_{OUT(max)}$		0.3%		
T _{LDSR}	Transient load step response	I_{OUT} = 0.1 A to 2 A, T_R = T_F = 400 ns, PWM mode		±55		mV
T _{LNSR}	Transient line response	$V_{(VIN_Bx)}$ stepping 3 V \leftrightarrow 3.5 V, $T_R = T_F = 10$ μ s, $I_{OUT} = I_{OUT(max)}$		±10		mV
	Forward current limit for both bucks (peak for every switching cycle)	Programmable range	1.5		4	
		Step size		0.5		Α
I _{LIM} FWD		Accuracy, V _(VIN Bx) ≥ 3 V, I _{LIM} = 4 A	-5%	7.5%	20%	
		Accuracy, 2.8 V \leq V _(VIN Bx) $<$ 3 V, I _{LIM} = 4 A	-20%	7.5%	20%	
I _{LIM NEG}	Negative current limit	, <u> </u>	1.6	2.0	3.0	Α
R _{DS(ON)} HS FET	On-resistance, high-side FET	Each phase, between VIN_Bx and SW_Bx pins (I = 1 A)		50	110	mΩ
R _{DS(ON)} LS FET	On-resistance, low-side FET	Each phase, between SW_Bx and PGND_Bx pins (I = 1 A)		45	90	mΩ
$f_{\sf SW}$	Switching frequency	PWM mode	1.8	2	2.2	MHz
	Start-up time (soft start)	From ENx to V _{OUT_Bx} = 0.35 V (slew-rate control begins)		120		μs
		SLEW_RATEx[2:0] = 010, $C_{OUT\text{-}TOTAL_BUCK} < 80 \mu F$		10		
		SLEW_RATEx[2:0] = 011, $C_{OUT-TOTAL_BUCK} < 130 \mu F$		7.5		
	Output voltage slew-	SLEW_RATEx[2:0] = 100, $C_{OUT-TOTAL_BUCK} < 250 \mu F$	450/	3.8	450/	m)//a
	rate ⁽⁴⁾	SLEW_RATEx[2:0] = 101, C _{OUT-TOTAL_BUCK} < 500 µF	–15% -	1.9	15%	mV/μs
		SLEW_RATEx[2:0] = 110, C _{OUT-TOTAL_BUCK} < 500 µF				
		SLEW_RATEx[2:0] = 111, C _{OUT-TOTAL_BUCK} < 500 µF		0.47		
I _{PFM-PWM}	PFM-to-PWM - current threshold ⁽⁵⁾			550		mA
I _{PWM-PFM}	PWM-to-PFM - current threshold ⁽⁵⁾			290		mA
R _{DIS_Bx}	Output pull-down resistance	Regulator disabled	150	250	350	Ω
			i e			1

⁽⁴⁾ The slew-rate can be limited by the current limit (forward or negative current limit), output capacitance and load current.

⁽⁵⁾ The final PFM-to-PWM and PWM-to-PFM switchover current varies slightly and is dependent on the output voltage, input voltage and the inductor current level.

Electrical Characteristics (continued)

Limits apply over the junction temperature range $-40^{\circ}\text{C} \le T_{J} \le +140^{\circ}\text{C}$, specified V_{VANA} , V_{VIN_Bx} , V_{VIN_LDOx} , V_{VOUT_Bx} , V_{VOUT_LDOx} and I_{OUT} range, unless otherwise noted. Typical values are at $T_{J} = 25^{\circ}\text{C}$, $V_{VANA} = V_{VIN_Bx} = V_{VIN_LDOx} = 3.7 \text{ V}$, and $V_{OUT} = 1 \text{ V}$, unless otherwise noted^{(1) (2)}.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		$V_{(VIN_Bx)}$ and $V_{(VANA)}$ fixed 3.7 V				
	Output voltage monitoring for PGOOD	Overvoltage threshold (compared to DC output voltage level, V _{VOUT_Bx_DC})	39	50	64	mV
	pin and for Powergood Interrupt	Undervoltage threshold (compared to DC output voltage level, V _{VOUT_Bx_DC})	-53	-40	-29	IIIV
	·	Deglitch time during operation and after voltage change	4		15	μs
	Gating time for PGOOD signal after regulator enable or voltage change	PGOOD_MODE = 0		800		μs
LDO REG	ULATORS					
V_{IN_LDOx}	Input voltage range for LDO power inputs	V_{IN_LDOx} can be higher or lower than $V_{(VANA)}$	2.5	3.7	5.5	V
V _{OUT_LDO}	Outrot valtage	Programmable voltage range	0.8		3.3	
х	Output voltage	Step size		0.1		V
I _{OUT_LDOx}	Output current				300	mA
	Dropout voltage	$\begin{aligned} &V_{(VIN_LDOx)} - V_{(VOUT_LDOx)}, \ I_{OUT} = I_{OUT(max)}, \\ &Programmed \ output \ voltage \ is \ higher \ than \\ &V_{(VIN_LDOx)} \end{aligned}$			200	mV
	DC output voltage	V _{OUT} < 1 V	-20		20	mV
V _{OUT_LDO} _DC	accuracy, includes voltage reference, DC load and line regulations, process, temperature	V _{OUT} ≥ 1 V	-2%		2%	
DC _{LNR}	DC line regulation	I _{OUT} = 1 mA		0.1		%/V
DC _{LDR}	DC load regulation	I _{OUT} = 1 mA to I _{OUT(max)}		0.8%		
T _{LDSR}	Transient load step response	I_{OUT} = 1 mA to 300 mA, T_R = T_F = 1 μ s		-50/+40		mV
T _{LNSR}	Transient line response	$V_{(VIN_LDOx)}$ stepping 3 V \leftrightarrow 3.5 V, $T_R = T_F =$ 10 μ s, $I_{OUT} = I_{OUT(max)}$		±7		mV
PSRR	Power supply ripple rejection	$f = 10 \text{ kHz}, I_{\text{OUT}} = I_{\text{OUT(max)}}$		53		dB
	Noise	10 Hz < F < 100 kHz, I _{OUT} = I _{OUT(max)}		82		μV_{rms}
I _{SHORT(LD} Ox)	LDO current limit	V _{OUT} = 0 V	400	500	600	mA
	Start-up time	From enable to valid output voltage		300		μs
	Slew rate during start-up			15		mV/μs
R_{DIS_LDOx}	Output pulldown resistance	Regulator disabled	150	250	350	Ω
		Overvoltage monitoring, voltage rising (compared to DC output voltage level, Vout_LDO_DC)	106%	108%	110%	
	Output voltage	Overvoltage monitoring, hysteresis	3%	3.5%	4%	
	monitoring for PGOOD pin and for power-good interrupt	Undervoltage monitoring, voltage falling (compared to DC output voltage level, Vout_LDO_DC)	90%	92%	94%	
		Undervoltage monitoring, hysteresis	3%	3.5%	4%	
		Deglitch time during operation and after voltage change	4		15	μs
	Gating time for PGOOD signal after regulator enable or voltage change	PGOOD_MODE = 0		800		μs

Electrical Characteristics (continued)

Limits apply over the junction temperature range $-40^{\circ}\text{C} \le T_{\text{J}} \le +140^{\circ}\text{C}$, specified V_{VANA} , $V_{\text{VIN_Bx}}$, $V_{\text{VIN_LDOx}}$, $V_{\text{VOUT_Bx}}$, $V_{\text{VOUT_LDOx}}$ and I_{OUT} range, unless otherwise noted. Typical values are at $T_{\text{J}} = 25^{\circ}\text{C}$, $V_{\text{VANA}} = V_{\text{VIN_Bx}} = V_{\text{VIN_LDOx}} = 3.7 \text{ V}$, and $V_{\text{OUT}} = 1 \text{ V}$, unless otherwise noted⁽¹⁾ (2).

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
EXTERNA	AL CLOCK AND PLL					
(0)		Nominal frequency	1		24	
f _{EXT CLK}	External input clock (6)	Nominal frequency step size		1		MHz
_		Required accuracy from nominal frequency	-30%		10%	
	Established data day	Delay for missing clock detection			1.8	
	External clock detection	Delay and debounce for clock detection			20	μs
	Clock change delay (internal to external)	Delay from valid clock detection to use of external clock		600		μs
	PLL output clock jitter	Cycle to cycle		300		ps, p-p
PROTECT	TION FUNCTIONS					
		Temperature rising, TDIE_WARN_LEVEL = 0	115	125	135	
	Thermal warning	Temperature rising, TDIE_WARN_LEVEL = 1	127	137	147	°C
		Hysteresis		20		
	Thermal shutdown	Temperature rising	140	150	160	°C
	mermai shuldown	Hysteresis		20		
		Voltage rising	5.6	5.8	6.1	V
VANA _{OVP}	VANA overvoltage	Voltage falling	5.45	5.73	5.96	V
		Hysteresis	40			mV
VANA _{UVL}	VANA undervoltage lockout	Voltage rising	2.51	2.63	2.75	V
0		Voltage falling	2.5	2.6	2.7	V
	Buck short-circuit detection	Threshold	280	360	440	mV
	LDO short-circuit detection	Threshold	190	300	450	mV
LOAD CU	IRRENT MEASUREMENT I	FOR BUCK REGULATORS				
	Current measurement range	Maximum code			10.22	Α
	Resolution	LSB		20		mA
	Measurement accuracy	I _{OUT} > 1 A		<10%		
	Measurement time	PFM mode (automatically changing to PWM mode for the measurement)		45		μs
		PWM mode		4		•
CURREN	T CONSUMPTION					
	Standby current consumption, regulators disabled			9		μΑ
	Active current consumption, one buck regulator enabled in Auto mode, internal RC oscillator, PGOOD monitoring enabled	I _{OUT_Bx} = 0 mA, not switching		58		μΑ

⁽⁶⁾ The external clock frequency must be selected so that buck switching frequency is above 1.7 MHz.

Electrical Characteristics (continued)

Limits apply over the junction temperature range $-40^{\circ}\text{C} \le T_{J} \le +140^{\circ}\text{C}$, specified V_{VANA} , V_{VIN_Bx} , V_{VIN_LDOx} , V_{VOUT_Bx} , V_{VOUT_LDOx} and I_{OUT} range, unless otherwise noted. Typical values are at $T_{J} = 25^{\circ}\text{C}$, $V_{VANA} = V_{VIN_Bx} = V_{VIN_LDOx} = 3.7 \text{ V}$, and $V_{OUT} = 1 \text{ V}$, unless otherwise noted^{(1) (2)}.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Active current consumption, two buck regulators enabled in Auto mode, internal RC oscillator, PGOOD monitoring enabled	I _{OUT_Bx} = 0 mA, not switching		100		μΑ
	Active current consumption during PWM operation, one buck regulator enabled	I _{OUT_Bx} = 0 mA		15		mA
	Active current consumption during PWM operation, two buck regulators enabled	I _{OUT_Bx} = 0 mA		30		mA
	LDO regulator enabled	Additional current consumption per LDO, I _{OUT_LDOx} = 0 mA		86		μΑ
	PLL and clock detector current consumption	f _{EXT_CLK} = 1 MHz, Additional current consumption when enabled		2		mA
DIGITA	L INPUT SIGNALS EN, SCL,	SDA, CLKIN				
V_{IL}	Input low level				0.4	V
V_{IH}	Input high level		1.2			V
V _{HYS}	Hysteresis of Schmitt Trigger inputs		10	80	200	mV
	EN/CLKIN pulldown resistance	EN_PD/CLKIN_PD = 1		500		$k\Omega$
DIGITA	L OUTPUT SIGNALS nINT, S	SDA				
V	Output low lovel	nINT: I _{SOURCE} = 2 mA			0.4	V
V _{OL}	Output low level	SDA: I _{SOURCE} = 20 mA			0.4	V
R _P	External pullup resistor for nINT	To VIO Supply		10		kΩ
DIGITA	L OUTPUT SIGNALS PGOO	D, GPO, GPO2			•	
V _{OL}	Output low level	I _{SOURCE} = 2 mA			0.4	V
V _{OH}	Output high level, configured to push-pull	I _{SINK} = 2 mA	V _{VANA} – 0.4		V_{VANA}	V
V _{PU}	Supply voltage for external pull-up resistor, configured to open-drain				V_{VANA}	V
R _{PU}	External pull-up resistor, configured to open-drain			10		kΩ
ALL DI	GITAL INPUTS					
I _{LEAK}	Input current	All logic inputs over pin voltage range	-1		1	μΑ

6.6 I²C Serial Bus Timing Parameters

These specifications are ensured by design. Unless otherwise noted, $V_{IN~Bx} = 3.7 \text{ V}$. See ⁽¹⁾ and \boxtimes 1.

			MIN	MAX	UNIT
		Standard mode		100	kHz
		Fast mode		400	NI IZ
SCL	Serial clock frequency	Fast mode+		1	
		High-speed mode, C _b = 100 pF		3.4	MHz
		High-speed mode, C _b = 400 pF		1.7	
		Standard mode	4.7		
		Fast mode	1.3		
LOW	SCL low time	Fast mode+	0.5		μs
		High-speed mode, C _b = 100 pF	0.16		
		High-speed mode, C _b = 400 pF	0.32		
		Standard mode	4		
		Fast mode	0.6		
HIGH	SCL high time	Fast mode+	0.26		μs
		High-speed mode, C _b = 100 pF	0.06		
		High-speed mode, C _b = 400 pF	0.12		
		Standard mode	250		
	Data action Core	Fast mode	100		
t _{SU;DAT}	Data setup time	Fast mode+	50		ns
		High-speed mode	10		
		Standard mode	10	3450	
		Fast mode	10	900	
HD;DAT	Data hold time	Fast mode+	10		ns
,		High-speed mode, C _b = 100 pF	10	70	
		High-speed mode, C _b = 400 pF	10	150	
		Standard mode	4.7		
	Setup time for a start or	Fast mode	0.6		
SU;STA	a repeated start condition	Fast mode+	0.26		μs
	Contaition	High-speed mode	0.16		
		Standard mode	4		
	Hold time for a start or a	Fast mode	0.6		
HD;STA	repeated start condition	Fast mode+	0.26		μs
		High-speed mode	0.16		
		Standard mode	4.7		
BUF	Bus free time between a	Fast mode	1.3		μs
201	stop and start condition	Fast mode +	0.5		I -
		Standard mode	4		
	Setup time for a stop	Fast mode	0.6		
SU;STO	condition	Fast mode+	0.26		μs
		High-speed mode	0.16		
		Standard mode	00	1000	
		Fast mode	20	300	
-DA	Rise time of SDA signal	Fast mode+	20	120	ns
rDA	rase time of ODA signal	High-speed mode, C _b = 100 pF	10	80	113
		High-speed mode, C _b = 100 pF	20	160	

⁽¹⁾ C_b refers to the capacitance of one bus line.

ZHCSGT6 – JUNE 2017 www.ti.com.cn

TEXAS INSTRUMENTS

I²C Serial Bus Timing Parameters (continued)

These specifications are ensured by design. Unless otherwise noted, $V_{IN~Bx} = 3.7 \text{ V}$. See ⁽¹⁾ and \boxtimes 1.

			MIN	MAX	UNIT
		Standard mode		300	
		Fast mode	20 × (V _{DD} / 5.5 V)	300	
t_{fDA}	Fall time of SDA signal	Fast mode+	20 × (V _{DD} / 5.5 V)	120	ns
		High-speed mode, C _b = 100 pF	10	80	
		High-speed mode, C _b = 400 pF	30	160	
		Standard mode		1000	
	Fast mode	20	300		
t_{rCL}	Rise time of SCL signal	Fast mode+		120	ns
		High-speed mode, C _b = 100 pF	10	40	
		High-speed mode, C _b = 400 pF	20	80	
	Rise time of SCL signal	High-speed mode, C _b = 100 pF	10	80	
t _{rCL1}	after a repeated start condition and after an acknowledge bit	High-speed mode, C _b = 400 pF	20	160	ns
		Standard mode		300	
		Fast mode	20 × (V _{DD} / 5.5 V)	300	
t_{fCL}	Fall time of a SCL signal	Fast mode +	20 × (V _{DD} / 5.5 V)	120	ns
		High-speed mode, $C_b = 10 - 100 \text{ pF}$	10	40	
		High-speed mode, C _b = 400 pF	20	80	
C _b	Capacitive load for each bus line (SCL and SDA)			400	pF
	Pulse width of spike	Standard mode, fast mode, and fast mode+		50	
t _{SP}	suppressed (SCL and SDA spikes that are less then the indicated width are suppressed)	High-speed mode		10	ns

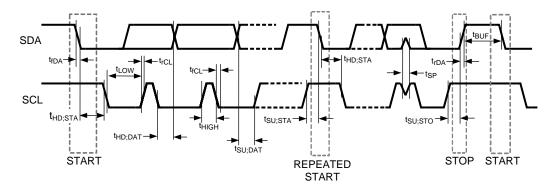
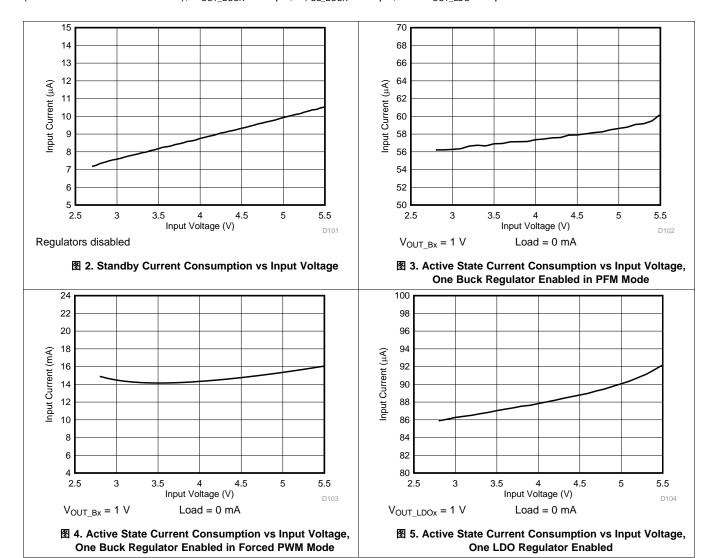



图 1. I²C Timing

6.7 Typical Characteristics

Unless otherwise specified: $V_{(VIN_Bx)} = V_{(VIN_LDOx)} = V_{(VANA)} = 3.7 \text{ V}, V_{OUT_Bx} = 1 \text{ V}, V_{OUT_LDO} = 1 \text{ V}, T_A = 25^{\circ}\text{C}, L = 0.47 \ \mu\text{H}$ (TOKO DFE252012PD-R47M), $C_{OUT_BUCK} = 22 \ \mu\text{F}, C_{POL_BUCK} = 22 \ \mu\text{F}, and } C_{OUT_LDO} = 1 \ \mu\text{F}.$

TEXAS INSTRUMENTS

7 Detailed Description

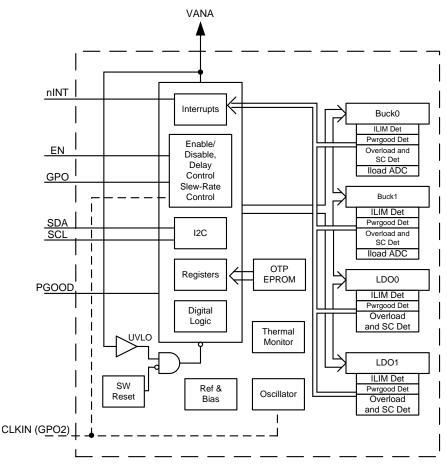
7.1 Overview

The LP87332B-Q1 is a high-efficiency, high-performance flexible power supply device with two step-down DC-DC converter cores (Buck0 and Buck1) and two low-dropout (LDO) linear regulators (LDO0 and LDO1) for automotive applications. 表 1 lists the output characteristics of the regulators.

表 1. Supply Specification

CUDDI V	OUTPUT							
SUPPLY	V _{OUT} RANGE (V)	RESOLUTION (mV)	I _{MAX} MAXIMUM OUTPUT CURRENT (mA)					
Buck0	0.7 to 3.36	10 (0.7 V to 0.73 V) 5 (0.73 V to 1.4 V) 20 (1.4 V to 3.36 V)	3000					
Buck1	0.7 to 3.36	10 (0.7 V to 0.73 V) 5 (0.73 V to 1.4 V) 20 (1.4 V to 3.36 V)	3000					
LDO0	0.8 to 3.3	100	300					
LDO1	0.8 to 3.3	100	300					

The LP87332B-Q1 also supports switching clock synchronization to an external clock (CLKIN pin). The nominal frequency of the external clock can be from 1 MHz to 24 MHz with 1-MHz steps.


Additional features include:

- Soft-start
- Input voltage protection:
 - Undervoltage lockout
 - Overvoltage protection
- Output voltage monitoring and protection:
 - Overvoltage monitoring
 - Undervoltage monitoring
 - Overload protection
- Thermal warning
- Thermal shutdown

The LP87332B-Q1 has one dedicated general purpose digital output (GPO) signal. CLKIN pin can be programmed as a second GPO signal (GPO2) if external clock is not needed. The output type (open-drain or push-pull) is programmable for the GPOs.

7.2 Functional Block Diagram

Copyright © 2016, Texas Instruments Incorporated

7.3 Feature Description

7.3.1 DC-DC Converters

7.3.1.1 Overview

The LP87332B-Q1 includes two step-down DC-DC converter cores. The cores are designed for flexibility; most of the functions are programmable, thus giving a possibility to optimize the regulator operation for each application. The buck regulators deliver 0.7-V to 3.36-V regulated voltage rails from a 2.8-V to 5.5-V supply voltage.

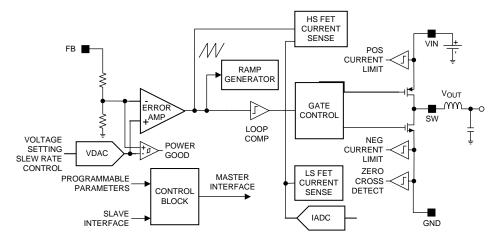
The LP87332B-Q1 has the following features:

- DVS support with programmable slew rate
- Automatic mode control based on the loading (PFM or PWM mode)
- Forced PWM mode option
- Optional external clock input to minimize crosstalk
- Optional spread-spectrum technique to reduce EMI
- Phase control for optimized EMI
- Synchronous rectification
- Current mode loop with PI compensator
- Power Good flag with maskable interrupt

ZHCSGT6 – JUNE 2017 www.ti.com.cn

TEXAS INSTRUMENTS

Feature Description (接下页)


- Power Good signal (PGOOD) with selectable sources
- · Average output current sensing (for PFM entry and load current measurement)

The following parameters can be programmed via registers, the default values are set by OTP bits:

- Output voltage
- Forced PWM operation
- Switch current limit
- Output voltage slew rate
- Enable and disable delays

There are two modes of operation for the buck converter, depending on the output current required: pulse-width modulation (PWM) and pulse-frequency modulation (PFM). The converter operates in PWM mode at high load currents of approximately 600 mA or higher. Lighter output current loads cause the converter to automatically switch into PFM mode for reduced current consumption when forced PWM mode is disabled. The forced PWM mode can be selected to maintain fixed switching frequency at all load current levels.

A block diagram of a single core is shown in \bigsepsec 6.

Copyright © 2016, Texas Instruments Incorporated

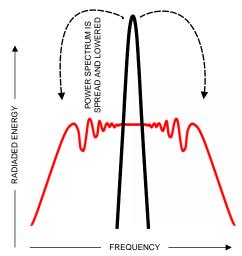
图 6. Detailed Block Diagram Showing One Core

7.3.1.2 Transition Between PWM and PFM Modes

PWM mode operation optimizes efficiency at mid to full load at the expense of light-load efficiency. The LP87332B-Q1 converter operates in PWM mode at load current of about 600 mA or higher. At lighter load current levels the device automatically switches into PFM mode for reduced current consumption when forced PWM mode is disabled (AUTO mode operation). By combining the PFM and the PWM modes a high efficiency is achieved over a wide output-load current range.

7.3.1.3 Buck Converter Load Current Measurement

Buck load current can be monitored via I^2C registers. The monitored buck converter is selected with the LOAD_CURRENT_BUCK_SELECT bit in SEL_I_LOAD register. A write to this selection register starts a current measurement sequence. The regulator is automatically forced to PWM mode for the measurement period. The measurement sequence is 50 μ s long, maximum.


LP87332B-Q1 can be configured to give out an interrupt (I_MEAS_INT bit in INT_TOP_1 register) after the load current measurement sequence is finished. Load current measurement interrupt can be masked with I_MEAS_MASK bit (TOP_MASK_1 register). The measurement result can be read from registers I_LOAD_1 and I_LOAD_2. Register I_LOAD_1 bits BUCK_LOAD_CURRENT[7:0] give out the LSB bits and register I_LOAD_2 bit BUCK_LOAD_CURRENT[8] the MSB bit. The measurement result BUCK_LOAD_CURRENT[8:0] LSB is 20 mA, and maximum code value of the measurement corresponds to 10.22 A.

Feature Description (接下页)

7.3.1.4 Spread-Spectrum Mode

Systems with periodic switching signals may generate a large amount of switching noise in a set of narrowband frequencies (the switching frequency and its harmonics). The usual solution to reduce noise coupling is to add EMI-filters and shields to the boards. The LP87332B-Q1 has register selectable spread-spectrum mode which minimizes the need for output filters, ferrite beads, or chokes. In spread spectrum mode, the switching frequency varies around the center frequency, reducing the EMI emissions radiated by the converter and associated passive components and PCB traces (see <a>8 7). This feature is available only when internal RC oscillator is used (EN_PLL bit is 0 in PLL_CTRL register), and it is enabled with the EN_SPREAD_SPEC bit in CONFIG register, and it affects both buck cores.

Where a fixed frequency converter exhibits large amounts of spectral energy at the switching frequency, the spread spectrum architecture of the LP87332B-Q1 spreads that energy over a large bandwidth.

图 7. Spread-Spectrum Modulation

7.3.2 Sync Clock Functionality

The LP87332B-Q1 device contains a CLKIN input to synchronize the switching clock of the buck regulators with the external clock. The block diagram of the clocking and PLL module is shown in 8 8. Depending on the EN PLL bit in PLL CTRL register and the external clock availability, the external clock is selected and interrupt is generated as shown in 表 2. The interrupt can be masked with SYNC_CLK_MASK bit in TOP_MASK_1 register. The nominal frequency of the external input clock is set by EXT CLK FREQ[4:0] bits in PLL CTRL register, and it can be from 1 MHz to 24 MHz with 1-MHz steps. The external clock must be inside accuracy limits (-30%/+10%) of the selected frequency for valid clock detection.

The SYNC_CLK_INT interrupt in INT_TOP_1 register is also generated in cases where the external clock is expected but it is not available. These cases are start-up (read OTP-to-standby transition) when EN_PLL is 1 and Buck regulator enable (standby-to-active transition) when EN PLL is 1.

ZHCSGT6 – JUNE 2017 www.ti.com.cn

TEXAS INSTRUMENTS

Feature Description (接下页)

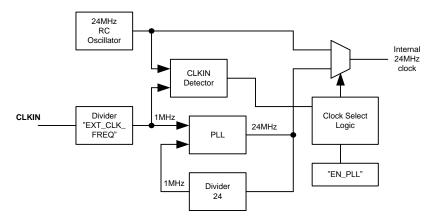


图 8. Clock and PLL Module

•								
DEVICE OPERATION MODE	EN DI I		INTERRUPT FOR EXTERNAL CLOCK	CLOCK				
STANDBY	0	Disabled	No	Internal RC				
ACTIVE	0	Disabled	No	Internal RC				
STANDBY	1	Enabled	When external clock appears or disappears	Automatic change to external clock when available				
ACTIVE	1	Enabled	When external clock appears or disappears	Automatic change to external clock when available				

表 2. PLL Operation

7.3.3 Low-Dropout Linear Regulators (LDOs)

The LP87332B-Q1 device includes two identical linear regulators, LDO0 and LDO1, targeting analog loads with low noise requirements. The LDO regulators deliver 0.8-V to 3.3-V regulated voltage rails from a 2.5-V to 5.5-V input voltage. Both regulators have dedicated inputs which can be higher or lower than the device system voltage $V_{(VANA)}$ to minimize the power dissipation.

7.3.4 Power-Up

The power-up sequence for the LP87332B-Q1 is as follows:

- VANA (and VIN_Bx) reach minimum recommended levels (V_{VANA} > VANA_{UVLO}). This initiates power-on-reset (POR), OTP reading, and enables the system I/O interface. The I²C host should allow at least 1.2 ms before writing or reading data to the LP87332B-Q1.
- Device enters standby mode.
- The host can change the default register setting by I²C if needed.
- The regulators can be enabled/disabled and the GPO signals can be controlled by EN pin and by I²C interface.

Transitions between the operating modes are shown in *Modes of Operation*.

7.3.5 Regulator Control

7.3.5.1 Enabling and Disabling Regulators

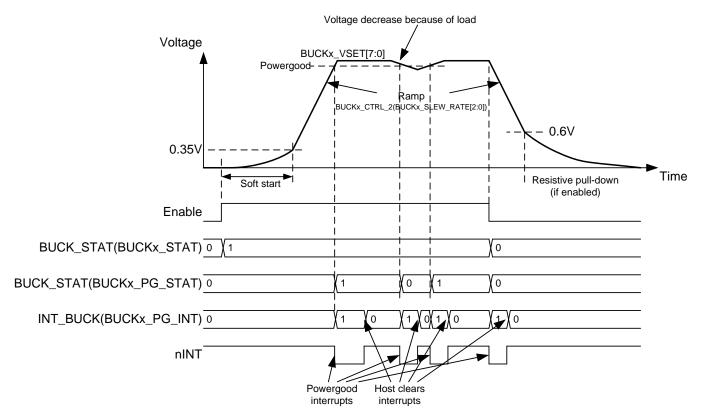
The regulators can be enabled when the device is in STANDBY or ACTIVE state. There are two ways for enable and disable the buck regulators:

- Using BUCKx_EN bit in BUCKx_CTRL_1 register (BUCKx_EN_PIN_CTRL bit is 0 in BUCKx_CTRL_1 register)
- Using EN control pin (BUCKx_EN bit is 1 AND BUCKx_EN_PIN_CTRL bit is 1)

www.ti.com.cn ZHCSGT6 – JUNE 2017

Similarly there are two ways to enable and disable the LDO regulators:

- Using LDOx_EN bit in LDOx_CTRL register (LDOx_EN_PIN_CTRL bit is 0 in LDOx_CTRL register)
- Using EN control pin (LDOx_EN bit is 1 AND LDOx_EN_PIN_CTRL bit is 1)


If the EN control pin is used for enable and disable then the delay from the control signal rising edge to start-up is set by BUCKx_STARTUP_DELAY[3:0] bits in BUCKx_DELAY register and LDOx_STARTUP_DELAY[3:0] bits in LDOx_DELAY register and the delay from control signal falling edge to shutdown is set by BUCKx_SHUTDOWN_DELAY[3:0] bits in BUCKx_DELAY register and LDOx_SHUTDOWN_DELAY[3:0] bits in LDOx_DELAY register. The delays are valid only for EN signal transitions and not for control with I²C writings to BUCKx_EN and LDOx_EN bits.

The control of the regulator (with 0-ms delays) is shown in 表 3.

表 3. Regulator Control

	BUCKx_EN / LDOx_EN	BUCKx_EN_PIN_CTRL / LDOx_EN_PIN_CTRL	EN PIN	BUCKx OUTPUT VOLTAGE / LDOx OUTPUT VOLTAGE
Enable/disable control with	0	Don't Care	Don't Care	Disabled
BUCKx_EN/LDOx_EN bit	1	0	Don't Care	BUCKx_VSET[7:0] / LDOx_VSET[4:0]
Enable/disable control with	1	1	Low	Disabled
EN pin	1	1	High	BUCKx_VSET[7:0] / LDOx_VSET[4:0]

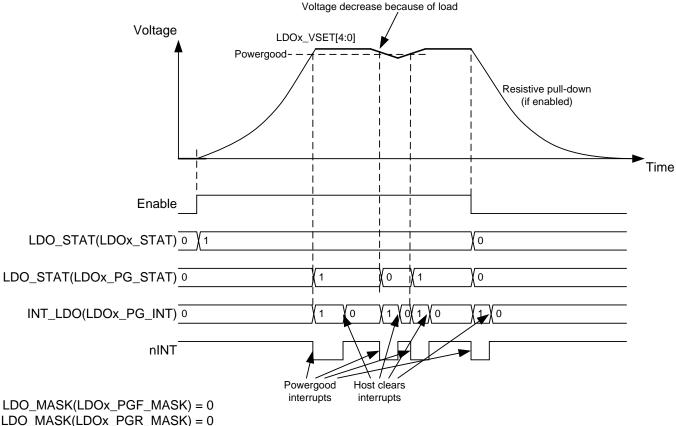
The buck regulator is enabled by the EN pin or by I²C writing as shown in 9. The soft-start circuit limits the inrush current during start-up. When the output voltage rises to a 0.35-V level, the output voltage becomes slew-rate controlled. If there is a short circuit at the output, and the output voltage does not increase above the 0.35-V level in 1 ms or the output voltage drops below 0.35-V level during operation (for minimum of 1 ms), the regulator is disabled, and BUCKx_SC_INT interrupt in INT_BUCK register is set. When the output voltage reaches the Power-Good threshold level the BUCKx_PG_INT interrupt flag in INT_BUCK register is set. The Power-Good interrupt flag when reaching valid output voltage can be masked using BUCKx_PGR_MASK bit in BUCK_MASK register. The Power-Good interrupt flag can be also generated when the output voltage becomes invalid. The interrupt mask for invalid output voltage detection is set by BUCKx_PGF_MASK bit in BUCK_MASK register. A BUCKx_PG_STAT bit in BUCK_STAT register shows always the validity of the output voltage: 1 means valid and 0 means invalid output voltage. A PGOOD_WINDOW_BUCK bit in PGOOD_CTRL_1 register sets the detection method for the valid buck output voltage, either undervoltage detection or undervoltage and overvoltage detection.

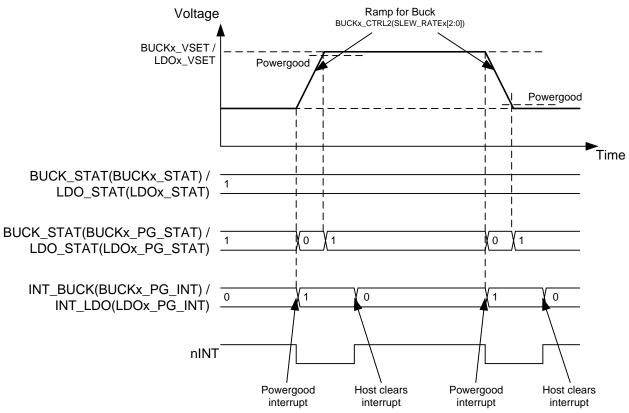
BUCK_MASK(BUCKx_PGF_MASK) = 0 BUCK_MASK(BUCKx_PGR_MASK) = 0

图 9. Buck Regulator Enable and Disable

The LDO regulator is enabled by the EN pin or by I²C writing as shown in Σ 10. The soft-start circuit limits the in-rush current during start-up. Output voltage increase rate is less than 100 mV/μsec during soft-start. If there is a short circuit at the output, and the output voltage does not increase above the 0.3-V level in 1 ms or the output voltage drops below 0.3-V level during operation (for minimum of 1 ms), the regulator is disabled, and LDOx_SC_INT interrupt in INT_LDO register is set. When the output voltage reaches the Power-Good threshold level the LDOx_PG_INT interrupt flag in INT_LDO register is set. The Power-Good interrupt flag when reaching valid output voltage can be masked using LDOx_PGR_MASK bit in LDO_MASK register. The Power-Good interrupt flag can be also generated when the output voltage becomes invalid. The interrupt mask for invalid output voltage detection is set by LDOx_PGF_MASK bit in LDO_MASK register. A LDOx_PG_STAT bit in LDO_STAT register shows always the validity of the output voltage; 1 means valid, and 0 means invalid output voltage. A PGOOD_WINDOW_LDO bit in PGOOD_CTRL_1 register sets the detection method for the valid LDO output voltage, either undervoltage detection or undervoltage and overvoltage detection.

ZHCSGT6-JUNE 2017 www.ti.com.cn




图 10. LDO Regulator Enable and Disable

The EN input pin have an integrated pulldown resistor. The pulldown resistor is controlled with EN PD bit in CONFIG register.

7.3.5.2 Changing Output Voltage

The output voltage of the regulator can be changed by writing to the BUCKx_VOUT / LDOx_VOUT register. The voltage change for buck regulator is always slew-rate controlled, and the slew-rate is defined by the BUCKx_SLEW_RATE[2:0] bits in BUCKx_CTRL_2 register. During voltage change the forced PWM mode is used automatically. When the programmed output voltage is achieved, the mode becomes the one defined by load current, and the BUCKx FPWM bit in BUCKx CTRL 1 register.

The voltage change and Power-Good interrupts are shown in \begin{aligned}
\begin{aligned}
11.
\end{aligned}

BUCK_MASK(BUCKx_PGF_MASK)=0 BUCK_MASK(BUCKx_PGR_MASK)=0

LDO_MASK(LDOx_PGF_MASK)=0 LDO_MASK(LDOx_PGR_MASK)=0

图 11. Regulator Output Voltage Change

During an LDO voltage change the internal reference for the Power-Good detection is also changed. For this reason the Power Good may toggle during the LDO voltage change can indicate valid output even when the output voltage is changing. This period takes less than 100 μ s and after that time the Power Good gives correct value.

7.3.6 Enable and Disable Sequences

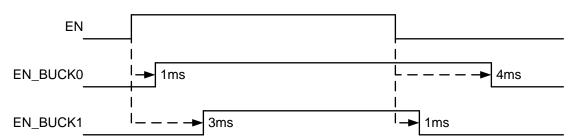
The LP87332B-Q1 device supports start-up and shutdown sequencing with programmable delays for different regulator outputs using single EN control signal. The Buck regulator is selected for delayed control with:

- BUCKx_EN = 1 in BUCKx_CTRL_1 register
- BUCKx EN PIN CTRL = 1 in BUCKx CTRL 1 register
- BUCKx_VSET[7:0] bits in BUCKx_VOUT register defines the voltage when EN pin is high
- The delay from rising edge of EN pin to the regulator enable is set by BUCKx_STARTUP_DELAY[3:0] bits in BUCKx_DELAY register and
- The delay from falling edge of EN pin to the regulator disable is set by BUCKx_SHUTDOWN_DELAY[3:0] bits in BUCKx_DELAY register.

www.ti.com.cn ZHCSGT6 – JUNE 2017

In the same way the LDO regulator is selected for delayed control with:

- LDOx_EN = 1 in LDOx_CTRL register
- LDOx EN PIN CTRL = 1 in LDOx CTRL register
- LDOx_VSET[4:0] bits in LDOx_VOUT register defines the voltage when EN pin is high
- The delay from rising edge of EN pin to the regulator enable is set by LDOx_STARTUP_DELAY[3:0] bits in LDOx_DELAY register and
- The delay from falling edge of EN pin to the regulator disable is set by LDOx_SHUTDOWN_DELAY[3:0] bits in LDOx_DELAY register.


The GPO (and GPO2) digital output signals can be also controlled as a part of start-up and shutdown sequencing with the following settings:

- GPOx_EN = 1 in GPO_CTRL register
- GPOx EN PIN CTRL = 1 in GPO CTRL register
- The delay from rising edge of EN pin to the rising edge of GPO/GPO2 signal is set by GPOx_STARTUP_DELAY[3:0] bits in GPOx_DELAY register and
- The delay from falling edge of EN pin to the falling edge of GPO/GPO2 signal is set by GPOx SHUTDOWN DELAY[3:0] bits in GPOx DELAY register.

An example of the start-up and shutdown sequences for the buck regulators are shown in

12. The start-up and shutdown delays for the Buck0 regulator are 1 ms and 4 ms; for the Buck1 regulator start-up and shutdown delays are 3 ms and 1 ms. The delay settings are used only for enable/disable control with EN signal.

Typical sequence

Sequence with short EN low and high periods

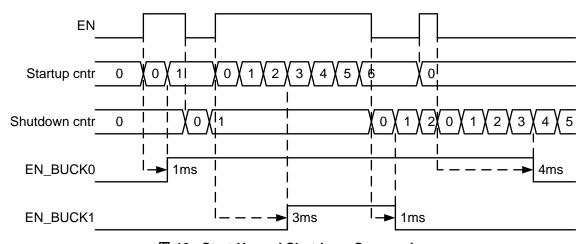


图 12. Start-Up and Shutdown Sequencing

7.3.7 Device Reset Scenarios

There are three reset methods implemented on the LP87332B-Q1:

Software reset with SW RESET bit in RESET register

Undervoltage lockout (UVLO) reset from VANA supply

An SW reset occurs when SW_RESET bit is written 1. The bit is automatically cleared after writing. This event disables all the regulators immediately, drives GPO and GPO2 signals low, resets all the register bits to the default values and OTP bits are loaded (see 8 18). I²C interface is not reset during software reset.

If VANA supply voltage falls below the UVLO threshold level then all the regulators are disabled immediately, GPO and GPO2 signals are driven low, and all the register bits are reset to the default values. When the VANA supply voltage transition above UVLO threshold level an internal POR occurs. OTP bits are loaded to the registers and a startup is initiated according to the register settings.

7.3.8 Diagnosis and Protection Features

The LP87332B-Q1 is capable of providing four levels of protection features:

- Information of valid regulator output voltage which sets interrupt or PGOOD signal;
- · Warnings for diagnosis which sets interrupt;
- Protection events which are disabling the regulators; and
- · Faults which are causing the device to shutdown.

The LP87332B-Q1 sets the flag bits indicating what protection or warning conditions have occurred, and the nINT pin is pulled low. nINT is released again after a clear of flags is complete. The nINT signal stays low until all the pending interrupts are cleared.

When a fault is detected or software requested reset, it is indicated by a RESET_REG_INT interrupt flag in INT_TOP_2 register after next start-up. If the RESET_REG_MASK is set to masked in the OTP, the interrupt is not generated. The mask bit change with I²C does not affect, because the RESET_REG_MASK bit is loaded from OTP during reset sequence.

表 4. Summary of Interrupt Signals

EVENT	OUTCOME	INTERRUPT BIT	INTERRUPT MASK BIT	STATUS BIT	RECOVERY/INTERRUPT CLEAR
Buck current limit triggered	No effect	BUCK_INT BUCKx_ILIM_INT	BUCKx_ILIM_MASK	BUCKx_ILIM_STAT	Write 1 to BUCKx_ILIM_INT bit Interrupt is not cleared if current limit is active
LDO current limit triggered	No effect	LDO_INT LDOx_ILIM_INT	LDOx_ILIM_MASK	LDOx_ILIM_STAT	Write 1 to LDOx_ILIM_INT bit Interrupt is not cleared if current limit is active
Buck short circuit (V _{VOUT} < 0.35 V at 1 ms after enable) or overload (V _{VOUT} decreasing below 0.35 V during operation, 1-ms debounce)	Regulator disable	BUCK_INT BUCKx_SC_INT	N/A	N/A	Write 1 to BUCKx_SC_INT bit
LDO short circuit (V _{vout} < 0.3 V at 1 ms after enable) or overload (V _{vout} decreasing below 0.3 V during operation, 1-ms debounce)	Regulator disable	LDO_INT LDOx_SC_INT	N/A	N/A	Write 1 to LDOx_SC_INT bit
Thermal sarning	No effect	TDIE_WARN_INT	TDIE_WARN_MASK	TDIE_WARN_STAT	Write 1 to TDIE_WARN_INT bit Interrupt is not cleared if temperature is above thermal warning level
Thermal shutdown	All regulators disabled immediately and GPO and GPO2 are set to low	TDIE_SD_INT	N/A	TDIE_SD_STAT	Write 1 to TDIE_SD_INT bit Interrupt is not cleared if temperature is above thermal shutdown level
VANA overvoltage (VANA _{OVP})	All regulators disabled immediately and GPO and GPO2 are set to low	OVP_INT	N/A	OVP_STAT	Write 1 to OVP_INT bit Interrupt is not cleared if VANA voltage is above VANA _{OVP} level
Buck power good, output voltage becomes valid	No effect	BUCK_INT BUCKx_PG_INT	BUCKx_PGR_MASK	BUCKx_PG_STAT	Write 1 to BUCKx_PG_INT bit
Buck power good, output voltage becomes invalid	No effect	BUCK_INT BUCKx_PG_INT	BUCKx_PGF_MASK	BUCKx_PG_STAT	Write 1 to BUCKx_PG_INT bit
LDO Power Good, output voltage becomes valid	No effect	LDO_INT LDOx_PG_INT	LDOx_PGR_MASK	LDOx_PG_STAT	Write 1 to LDOx_PG_INT bit

ZHCSGT6-JUNE 2017 www.ti.com.cn

表 4. Summary of Interrupt Signals (接下页)

EVENT	OUTCOME	INTERRUPT BIT	INTERRUPT MASK BIT	STATUS BIT	RECOVERY/INTERRUPT CLEAR
LDO power good, output voltage becomes invalid	No effect	LDO_INT LDOx_PG_INT	LDOx_PGF_MASK	LDOx_PG_STAT	Write 1 to LDOx_PG_INT bit
PGOOD pin changing from active to inactive state ⁽¹⁾	No effect	PGOOD_INT	PGOOD_MASK	PGOOD_STAT	Write 1 to PGOOD_INT bit
External clock appears or disappears	No effect to regulators	SYNC_CLK_INT ⁽²⁾	SYNC_CLK_MASK	SYNC_CLK_STAT	Write 1 to SYNC_CLK_INT bit
Load current measurement ready	No effect	I_MEAS_INT	I_MEAS_MASK	N/A	Write 1 to I_MEAS_INT bit
Supply voltage VANA _{UVLO} triggered (VANA falling)	Immediate shutdown, registers reset to default values	N/A	N/A	N/A	N/A
Supply voltage VANA _{UVLO} triggered (VANA rising)	Startup, registers reset to default values and OTP bits loaded	RESET_REG_INT	RESET_REG_MASK	N/A	Write 1 to RESET_REG_INT bit
Software requested reset	Immediate shutdown followed by power up, registers reset to default values	RESET_REG_INT	RESET_REG_MASK	N/A	Write 1 to RESET_REG_INT bit

⁽¹⁾ PGOOD_STAT bit is 1 when the PGOOD pin shows valid voltages. PGOOD_POL bit in PGOOD_CTRL_1 register affects only PGOOD pin polarity, not Power Good and PGOOD_INT interrupt polarity.

7.3.8.1 Power-Good Information (PGOOD pin)

In addition to the interrupt-based indication of the current limit and the Power-Good level the LP87332B-Q1 device supports monitoring with PGOOD signal:

- Regulator output voltage,
- Input supply overvoltage,
- Thermal warning and
- Thermal shutdown.

Regulator output voltage monitoring (not current limit monitoring) can be selected for PGOOD indication. This selection is individual for both buck regulators and both LDO regulators and is set by EN_PGOOD_BUCKx bits in PGOOD CTRL 1 register and EN PGOOD LDOx bits in PGOOD CTRL 1 register. When a regulator is disabled, the monitoring is automatically masked to prevent it forcing PGOOD inactive. A thermal warning can be also selected for PGOOD indication with EN PGOOD TWARN bit in PGOOD CTRL 2 register. The monitoring from all the output rails, thermal warning (TDIE_WARN_STAT), input overvoltage interrupt (OVP_INT), and thermal shutdown interrupt (TDIE_SD_INT) are combined, and PGOOD pin is active only if all the selected sources shows a valid status.

The type of output voltage monitoring for PGOOD signal is selected by PGOOD_WINDOW_x bits in PGOOD_CTRL_1 register. If the bit is 0, only undervoltage is monitored; if the bit is 1, both undervoltage and overvoltage are monitored.

The polarity and the output type (push-pull or open-drain) are selected by the PGOOD_POL and PGOOD_OD bits in the PGOOD CTRL 1 register.

PGOOD is only active or asserted when all enabled power resource output voltages are within specified tolerance for each requested/programmed output voltage.

PGOOD is *inactive* or *de-asserted* if any enabled power resource output voltages is outside specified tolerance for each requested/programmed output voltage.

The device OTP setting selects either gated (that is, unusual) or continuous (that is, invalid) mode of operation.

7.3.8.1.1 PGOOD Pin Gated mode

The gated (or unusual) mode of operation is selected by setting PGOOD MODE bit to 0 in PGOOD CTRL 2 register.

For the gated mode of operation, PGOOD behaves as follows:

PGOOD is set to active or asserted state upon exiting OTP configuration as an initial default state.

Interrupt is generated during clock-detector operation and if clock is not available when clock detector is enabled.

ZHCSGT6 – JUNE 2017 www.ti.com.cn

- PGOOD status is suspended or unchanged during an 800-µs gated time period, thereby gating-off the status
 indication.
- During normal power-up sequencing and requested voltage changes, PGOOD state is not changed during an 800-µs gated time period. It typically remains *active* or *asserted* for normal conditions.
- During an *abnormal* power-up sequencing and requested voltage changes, PGOOD status could change to *inactive* or *de-asserted* after an 800-µs gated time period if any output voltage is outside of regulation range.
- Using the *gated mode of operation* could allow the PGOOD signal to initiate an immediate power shutdown sequence if the PGOOD signal is wired-OR with signal connected to EN input. This type of circuit configuration provides a smart PORz function for processor that eliminates the need for additional components to generate PORz upon start-up and to monitor voltage levels of key voltage domains.

The fault sets corresponding fault bit 1 in PG_FAULT register. The detected fault must be cleared to continue the PGOOD monitoring. The overvoltage and thermal shutdown are cleared by writing 1 to the OVP_INT and TDIE_SD_INT interrupt bits in INT_TOP_1 register. The regulator fault is cleared by writing 1 to the corresponding register bit in PG_FAULT register. The interrupts can be also cleared with VANA UVLO by toggling the input supply. An example of PGOOD pin operation in gated mode is shown in $8 \ 13$.

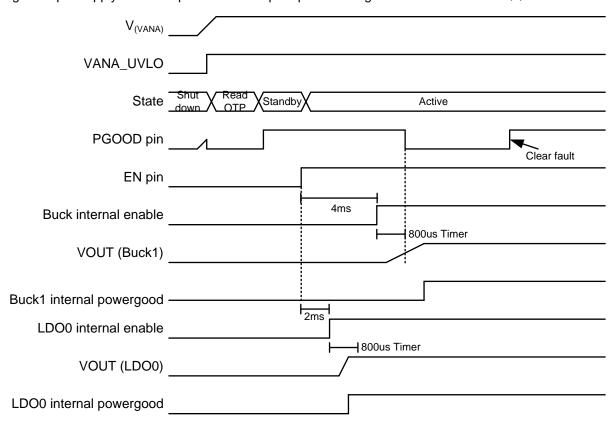


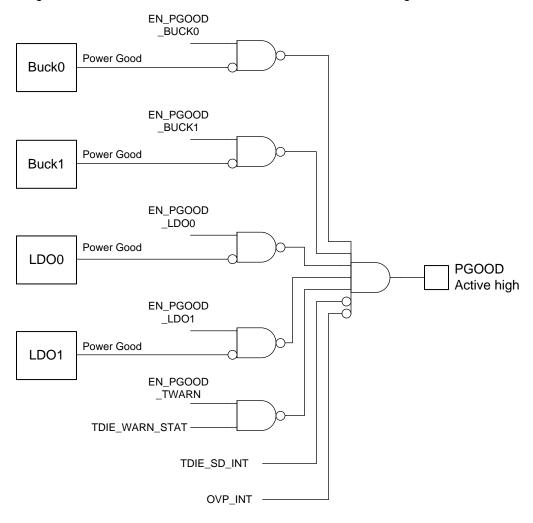
图 13. PGOOD Pin Operation in Gated Mode

7.3.8.1.2 PGOOD Pin Continuous Mode

The continuous (or *unvalid*) mode of operation is selected by setting PGOOD_MODE bit to 1 in PGOOD_CTRL_2 register.

For the continuous mode of operation, PGOOD behaves as follows:

- PGOOD is set to active or asserted state upon exiting OTP configuration.
- PGOOD is set to *inactive* or *de-asserted* as soon as regulator is enabled.
- PGOOD status begins indicating output voltage regulation status immediately and continuously.
- During power-up sequencing and requested voltage changes, PGOOD will toggle between inactive or deasserted while output voltages are outside of regulation ranges and active or asserted when inside of regulation ranges.



The PG FAULT register bits are latched and maintain the fault information until host clears the fault bit by writing 1 to the bit. The PGOOD signal indicates also a thermal shutdown and input overvoltage interrupts, which are cleared by clearing the interrupt bits.

When regulator voltage is transitioning from one target voltage to another, the PGOOD signal is set inactive.

When the PGOOD signal becomes inactive, the source for the fault can be read from PG FAULT register. If the invalid output voltage becomes valid again the PGOOD signal becomes active. Thus the PGOOD signal shows all the time if the monitored output voltages are valid. The block diagram for this operation is shown in 🛭 14 and an example of operation is shown in \bigsep{\bigset} 15.

The PGOOD signal can be also configured so that it maintains inactive state even when the monitored outputs are valid but there are PG_FAULT_x bits in PG_FAULT register pending clearance. This type of operation is selected by setting PGFAULT GATES PGOOD bit to 1 in PGOOD CTRL 2 register.

Copyright © 2016, Texas Instruments Incorporated

图 14. PGOOD Block Diagram (Continuous Mode)

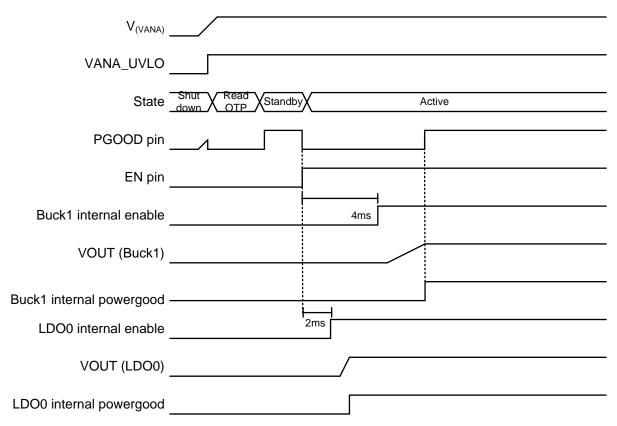


图 15. PGOOD Pin Operation in Continuous Mode

7.3.8.2 Warnings for Diagnosis (Interrupt)

7.3.8.2.1 Output Power Limit

The Buck regulators have programmable output peak current limits. The limits are individually programmed for both regulators with BUCKx_ILIM[2:0] bits in BUCKx_CTRL_2 register. If the load current is increased so that the current limit is triggered, the regulator continues to regulate to the limit current level (peak current regulation). The voltage may decrease if the load current is higher than limit current. If the current regulation continues for 20 µs, the LP87332B-Q1 device sets the BUCKx_ILIM_INT bit in INT_BUCK register and pulls the nINT pin low. The host processor can read BUCKx_ILIM_STAT bits in BUCK_STAT register to see if the regulator is still in peak current regulation mode and the interrupt is cleared by writing 1 to BUCKx_ILIM_INT bit. The current limit interrupt can be masked by setting BUCKx_ILIM_MASK bit in BUCK_MASK register to 1. The Buck overload situation is shown in § 16.

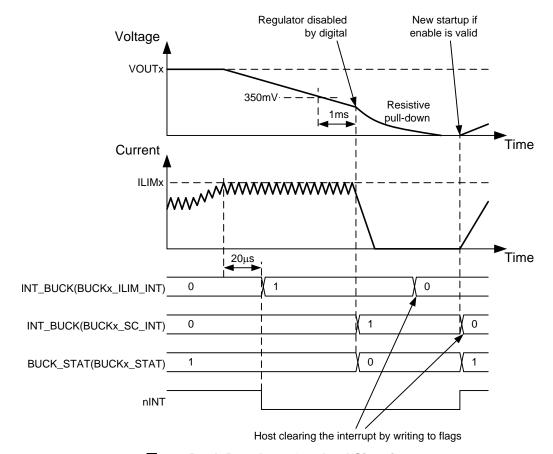


图 16. Buck Regulator Overload Situation

ZHCSGT6 – JUNE 2017 www.ti.com.cn

图 17. LDO Regulator Overload Situation

7.3.8.2.2 Thermal Warning

The LP87332B-Q1 device includes a protection feature against overtemperature by setting an interrupt for host processor. The threshold level of the thermal warning is selected with TDIE_WARN_LEVEL bit in CONFIG register.

If the LP87332B-Q1 device temperature increases above thermal warning level the device sets TDIE_WARN_INT bit in INT_TOP_1 register and pulls the nINT pin low. The status of the thermal warning can be read from TDIE_WARN_STAT bit in TOP_STAT register, and the interrupt is cleared by writing 1 to TDIE_WARN_INT bit. The thermal warning interrupt can be masked by setting TDIE_WARN_MASK bit in TOP_MASK_1 register to 1.

7.3.8.3 Protection (Regulator Disable)

If the regulator is disabled because of protection or fault (short-circuit protection, overload protection, thermal shutdown, input overvoltage protection, or UVLO), the output power FETs are set to high-impedance mode, and the output pulldown resistor is enabled (if enabled with BUCKx_RDIS_EN bit in BUCKx_CTRL_1 register and LDOx_RDIS_EN bit in LDOx_CTRL register). The turnoff time of the output voltage is defined by the output capacitance, load current, and the resistance of the integrated pull-down resistor. The pulldown resistors are active as long as VANA voltage is above approximately a 1.2-V level.

7.3.8.3.1 Short-Circuit and Overload Protection

A short-circuit protection feature allows the LP87332B-Q1 to protect itself and external components against short circuit at the output or against overload during start-up. For buck and LDO regulators the fault thresholds are about 350 mV (buck) and 300 mV (LDO), and the protection is triggered and the regulator is disabled if the output voltage is below the threshold level 1 ms after the regulator is enabled.

In a similar way the overload situation is protected during normal operation. If the output voltage falls below 0.35 V and 0.3 V and remains below the threshold level for 1 ms the regulator is disabled.

In buck regulator short-circuit and overload situations the BUCKx_SC_INT bit in INT_BUCK register and the INT_BUCKx bit in INT_TOP_1 register are set to 1, the BUCKx_STAT bit in BUCK_STAT register is set to 0, and the nINT signal is pulled low. In LDO regulator short-circuit and overload situations the LDOx_SC_INT bit in INT_LDO register and the INT_LDOx bit in INT_TOP_1 register are set to 1, the LDOx_STAT bit in LDO_STAT register is set to 0, and the nINT signal is pulled low. The host processor clears the interrupt by writing 1 to the BUCKx_SC_INT or to the LDOx_SC_INT bit. Upon clearing the interrupt the regulator makes a new start-up attempt if the regulator is in an enabled state.

7.3.8.3.2 Overvoltage Protection

The LP87332B-Q1 device monitors the input voltage from the VANA pin in standby and active operation modes. If the input voltage rises above VANA_{OVP} voltage level, all the regulators are disabled immediately (without switching ramp, no shutdown delays), pulldown resistors discharge the output voltages if they are enabled (BUCKx_RDIS_EN = 1 in BUCKx_CTRL_1 register and LDOx_RDIS_EN = 1 in LDOx_CTRL register), GPOs are set to logic low level, nINT signal is pulled low, OVP_INT bit in INT_TOP_1 register is set to 1, and BUCKx_STAT bit in BUCK_STAT register and LDOx_STAT bit in LDO_STAT register are set to 0. The host processor clears the interrupt by writing 1 to the OVP_INT bit. If the input voltage is above overvoltage detection level the interrupt is not cleared. The host can read the status of the overvoltage from the OVP_STAT bit in TOP_STAT register. Regulators cannot be enabled as long as the input voltage is above overvoltage detection level or the overvoltage interrupt is pending.

7.3.8.3.3 Thermal Shutdown

The LP87332B-Q1 has an overtemperature protection function that operates to protect itself from short-term misuse and overload conditions. When the junction temperature exceeds around 150°C, the regulators are disabled immediately (without switching ramp, no shutdown delays), the TDIE_SD_INT bit in INT_TOP_1 register is set to 1, the nINT signal is pulled low, and the device enters STANDBY. nINT is cleared by writing 1 to the TDIE_SD_INT bit. If the temperature is above thermal shutdown level the interrupt is not cleared. The host can read the status of the thermal shutdown from the TDIE_SD_STAT bit in TOP_STAT register. Regulators cannot be enabled as long as the junction temperature is above thermal shutdown level or the thermal shutdown interrupt is pending.

7.3.8.4 Fault (Power Down)

7.3.8.4.1 Undervoltage Lockout

When the input voltage falls below VANA $_{\text{UVLO}}$ at the VANA pin, the buck and LDO regulators are disabled immediately (without switching ramp, no shutdown delays), and the output capacitor is discharged using the pulldown resistor, and the LP87332B-Q1 device enters SHUTDOWN. When $V_{\text{(VANA)}}$ voltage is above VANA $_{\text{UVLO}}$ threshold level, the device powers up to STANDBY state.

If the reset interrupt is unmasked by default (OTP bit for RESET_REG_MASK is 0 in TOP_MASK_2 register) the RESET_REG_INT interrupt bit in INT_TOP_2 register indicates that the device has been in SHUTDOWN. The host processor must clear the interrupt by writing 1 to the RESET_REG_INT bit. If the host processor reads the RESET_REG_INT interrupt bit after detecting an nINT low signal, it knows that the input supply voltage has been below VANA_{UVLO} level (or the host has requested reset with SW_RESET bit in RESET register), and the registers are reset to default values.

7.3.9 Operation of the GPO Signals

The LP87332B-Q1 device supports up to 2 general purpose output signals, GPO and GPO2. The GPO2 signal is multiplexed with CLKIN signal. The selection between CLKIN and GPO2 pin function is set with CLKIN_PIN_SEL bit in CONFIG register.

The GPO pins are configured with the following bits:

 GPOx_OD bit in GPO_CTRL register defines the type of the output, either push-pull with V_(VANA) level or open drain

The logic level of the GPOx pin is set by EN_GPOx bit in GPO_CTRL register.

The control of the GPOs can be included to start-up and shutdown sequences. The GPO control for a sequence with EN pin is selected by GPOx_EN_PIN_CTRL bit in GPO_CTRL register. For start-up and shutdown sequence control see *Enable and Disable Sequences*.

7.3.10 Digital Signal Filtering

The digital signals have a debounce filtering. The signal or supply is sampled with a clock signal and a counter. This results as an accuracy of one clock period for the debounce window.

表 5. Digital Signal Filtering

EVENT	SIGNAL/SUPPLY	RISING EDGE LENGTH	FALLING EDGE LENGTH
Enable/disable for BUCKx, LDOx or GPOx	EN	3 µs ⁽¹⁾	3 µs ⁽¹⁾
VANA UVLO	VANA	3 μs ⁽¹⁾ (VANA voltage rising)	Immediate (VANA voltage falling)
VANA overvoltage	VANA	1 μs (VANA voltage rising)	20 μs (VANA voltage falling)
Thermal warning	TDIE_WARN_INT	20 μs	20 µs
Thermal shutdown	TDIE_SD_INT	20 µs	20 µs
Current limit	VOUTx_ILIM	20 µs	20 µs
Overload	FB_B0, FB_B1, VOUT_LDO0, VOUT_LDO1	1 ms	N/V
PGOOD pin and power-good interrupt	PGOOD / FB_B0, FB_B1, VOUT_LDO0, VOUT_LDO1	6 µs	6 µs

⁽¹⁾ No glitch filtering, only synchronization.

7.4 Device Functional Modes

7.4.1 Modes of Operation

SHUTDOWN: The $V_{(VANA)}$ voltage is below VANA_{UVLO} threshold level. All switch, reference, control, and bias circuitry of the LP87332B-Q1 device are turned off.

READ OTP: The main supply voltage $V_{(VANA)}$ is above VANA_{UVLO} level. The regulators are disabled, and the reference and bias circuitry of the LP87332B-Q1 are enabled. The OTP bits are loaded to registers.

STANDBY: The main supply voltage V_(VANA) is above VANA_{UVLO} level. The regulators are disabled, and the reference, control and bias circuitry of the LP87332B-Q1 are enabled. All registers can be read or written by the host processor via the system serial interface. The regulators can be enabled if needed.

ACTIVE: The main supply voltage $V_{(VANA)}$ is above VANA_{UVLO} level. At least one regulator is enabled. All registers can be read or written by the host processor via the system serial interface.

The operating modes and transitions between the modes are shown in <a>8 18.

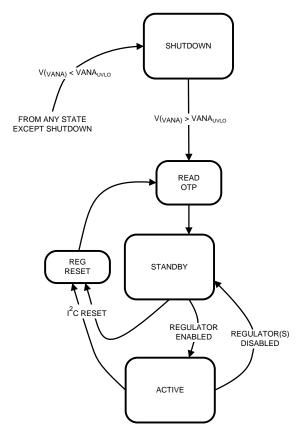


图 18. Device Operation Modes

TEXAS INSTRUMENTS

7.5 Programming

7.5.1 I²C-Compatible Interface

The I²C-compatible synchronous serial interface provides access to the programmable functions and registers on the device. This protocol uses a two-wire interface for bidirectional communications between the IC's connected to the bus. The two interface lines are the serial data line (SDA), and the serial clock line (SCL). Every device on the bus is assigned a unique address and acts as either a master or a slave depending on whether it generates or receives the serial clock SCL. The SCL and SDA lines must each have a pullup resistor placed on the line and remain HIGH even when the bus is idle. The LP87332B-Q1 supports standard mode (100 kHz), fast mode (400 kHz), fast mode plus (1 MHz), and high-speed mode (3.4 MHz).

7.5.1.1 Data Validity

The data on the SDA line must be stable during the HIGH period of the clock signal (SCL). In other words, the state of the data line can only be changed when clock signal is LOW.

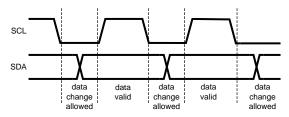


图 19. Data Validity Diagram

7.5.1.2 Start and Stop Conditions

The LP87332B-Q1 is controlled via an I²C-compatible interface. START and STOP conditions classify the beginning and end of the I²C session. A START condition is defined as SDA transitions from HIGH to LOW while SCL is HIGH. A STOP condition is defined as SDA transition from LOW to HIGH while SCL is HIGH. The I²C master always generates the START and STOP conditions.

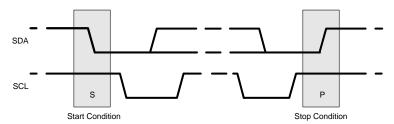


图 20. Start and Stop Sequences

The I^2C bus is considered busy after a START condition and free after a STOP condition. During data transmission the I^2C master can generate repeated START conditions. A START and a repeated START condition are equivalent function-wise. The data on SDA must be stable during the HIGH period of the clock signal (SCL). In other words, the state of SDA can only be changed when SCL is LOW. 21 shows the SDA and SCL signal timing for the I^2C -compatible bus. See the 1 for timing values.

Programming (接下页)

SDA t_{fDA} START START START

图 21. I²C-Compatible Timing

7.5.1.3 Transferring Data

Every byte put on the SDA line must be eight bits long, with the most significant bit (MSB) being transferred first. Each byte of data has to be followed by an acknowledge bit. The acknowledge related clock pulse is generated by the master. The master releases the SDA line (HIGH) during the acknowledge clock pulse. The LP87332B-Q1 pulls down the SDA line during the 9th clock pulse, signifying an acknowledge. The LP87332B-Q1 generates an acknowledge after each byte has been received.

There is one exception to the *acknowledge after every byte* rule. When the master is the receiver, it must indicate to the transmitter an end of data by not-acknowledging (*negative acknowledge*) the last byte clocked out of the slave. This *negative acknowledge* still includes the acknowledge clock pulse (generated by the master), but the SDA line is not pulled down.

注

If the $V_{(VANA)}$ voltage is below VANA_{UVLO} threshold level during I²C communication the LP87332B-Q1 device does not drive SDA line. The ACK signal and data transfer to the master is disabled at that time.

After the START condition, the bus master sends a chip address. This address is seven bits long followed by an eighth bit which is a data direction bit (READ or WRITE). For the eighth bit, a 0 indicates a WRITE, and a 1 indicates a READ. The second byte selects the register to which the data will be written. The third byte contains data to write to the selected register.

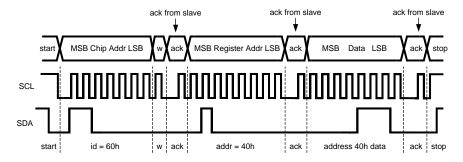
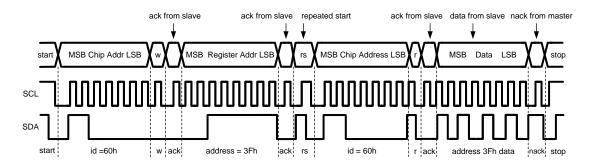



图 22. Write Cycle (w = write; SDA = 0). Example Device Address = 0x60

TEXAS INSTRUMENTS

Programming (接下页)

When READ function is to be accomplished, a WRITE function must precede the READ function as shown above.

图 23. Read Cycle (r = read; SDA = 1). Example Device Address = 0x60

7.5.1.4 PC-Compatible Chip Address

注 The device address for the LP87332B-Q1 is 0x60.

After the START condition, the I^2C master sends the 7-bit address followed by an eighth bit, read or write (R/W). R/W = 0 indicates a WRITE and R/W = 1 indicates a READ. The second byte following the device address selects the register address to which the data is written. The third byte contains the data for the selected register.

Here in an example with device address of 1100000Bin = 60Hex.

图 24. Device Address Example

7.5.1.5 Auto-Increment Feature

The auto-increment feature allows writing several consecutive registers within one transmission. Every time an 8-bit word is sent to the LP87332B-Q1, the internal address index counter is incremented by one and the next register is written. 表 6 shows writing sequence to two consecutive registers. Note that auto increment feature does not work for read.

表 6. Auto-Increment Example

MASTER ACTION	START	DEVICE ADDRES S = 0x60	WRITE		REGISTER ADDRESS		DATA		DATA		STOP
LP87332 B-Q1				ACK		ACK		ACK		ACK	

www.ti.com.cn ZHCSGT6-JUNE 2017

7.6 Register Maps

7.6.1 Register Descriptions

The LP87332B-Q1 is controlled by a set of registers through the I²C-compatible interface. The device registers, their addresses and their abbreviations are listed in 表 7. A more detailed description is given in the DEV REV to I_LOAD_1 sections.

The asterisk (*) marking indicates register bits which are updated from OTP memory during READ OTP state.

注

This register map describes the default values for a device with orderable code of LP87332BRHDRQ1. For other device versions the default values read from OTP memory can be different.

表 7. Summary of LP87332B-Q1 Control Registers

Addr	Register	Read / Write	D7	D6	D5	D4	D3	D2	D1	D0	
0x00	DEV_REV	R	DEVICE	_ID[1:0]			Rese	erved		-	
0x01	OTP_REV	R				OTP_	ID[7:0]				
0x02	BUCK0_ CTRL_1	R/W		Rese	erved		BUCK0_FP WM	BUCK0_RDI S_EN	BUCK0_ EN_PIN_CT RL	BUCK0_EN	
0x03	BUCK0_ CTRL_2	R/W	Rese	Reserved BUCK0_ILIM[2				BUCK0_SLEW_RATE[2:0]			
0x04	BUCK1_ CTRL_1	R/W		Rese	erved		BUCK1_FP WM	BUCK1_RDI S_EN	BUCK1_ EN_PIN_CT RL	BUCK1_EN	
0x05	BUCK1_ CTRL_2	R/W	Rese	erved	E	BUCK1_ILIM[2:	0]	BUCK	(1_SLEW_RAT	E[2:0]	
0x06	BUCK0_ VOUT	R/W				BUCK0_	VSET[7:0]				
0x07	BUCK1_ VOUT	R/W				BUCK1_\	VSET[7:0]				
0x08	LDO0_ CTRL	R/W		Reserved LD00_RDIS							
0x09	LDO1_ CTRL	R/W		Reserved					LDO1_ EN_PIN_CT RL	LDO1_EN	
0x0A	LDO0_ VOUT	R/W		Reserved			L	DO0_VSET[4:	0]		
0x0B	LDO1_ VOUT	R/W		Reserved			L	.DO1_VSET[4:	0]		
0x0C	BUCK0_ DELAY	R/W	В	JCK0_SHUTD(]YAJBD_NWC	3:0]	Е	BUCK0_STARTUP_DELAY[3:0]			
0x0D	BUCK1_ DELAY	R/W	В	JCK1_SHUTD]YAJBD_NWC	3:0]	Е	BUCK1_STARTUP_DELAY[3:0]			
0x0E	LDO0_ DELAY	R/W	LI	DO0_SHUTDO	WN_DELAY[3	:0]		LDO0_START	JP_DELAY[3:0]	
0x0F	LDO1_ DELAY	R/W	LI	DO1_SHUTDO	WN_DELAY[3	:0]		LDO1_START	JP_DELAY[3:0]	
0x10	GPO_ DELAY	R/W	G	SPO_SHUTDO	WN_DELAY[3:	0]		GPO_STARTU	JP_DELAY[3:0]	
0x11	GPO2_ DELAY	R/W	GPO2_SHUTDOWN_DELAY[3:0]					GPO2_STARTUP_DELAY[3:0]			
0x12	GPO_ CTRL	R/W	Reserved	GPO2_OD	GPO2_ EN_PIN_CT RL	GPO2_EN	Reserved	GPO_OD	GPO_ EN_PIN_CT RL	GPO_EN	
0x13	CONFIG	R/W	Reserved	STARTUP_ DELAY_SE L	SHUTDOW N_DELAY_ SEL	CLKIN_PIN _SEL	CLKIN_PD	EN_PD	TDIE _WARN _LEVEL	EN_ SPREAD _SPEC	
0x14	PLL_CTRL	R/W	Reserved	EN_PLL	Reserved		EX	T_CLK_FREQ	4:0]		

TEXAS INSTRUMENTS

Register Maps (接下页)

表 7. Summary of LP87332B-Q1 Control Registers (接下页)

Addr	Register	Read / Write	D7	D6	D5	D4	D3	D2	D1	D0
0x15	PGOOD_CT RL_1	R/W	PGOOD_P OL	PGOOD_O	PGOOD_WI NDOW_LD O	PGOOD_WI NDOW_BU CK	EN_PGOOD _LDO1	EN_PGOOD _LDO0	EN_PGOOD _BUCK1	EN_PGOOD _BUCK0
0x16	PGOOD_CT RL_2	R/W			Reserved			EN_PGOOD _TWARN	PG_FAULT _GATES_P GOOD	PGOOD_M ODE
0x17	PG_FAULT	R		Reserved PG_FAULT _LDO1 PG_FAULT _LD00 PG_FAULT _BUCK1						PG_FAULT _BUCK0
0x18	RESET	R/W				Reserved	•	•	•	SW_ RESET
0x19	INT_TOP_1	R/W	PGOOD_ INT	INT_ LDO	INT_ BUCK	SYNC_ CLK_INT	TDIE_SD_I NT	TDIE_ WARN_INT	OVP_INT	I_MEAS_ INT
0x1A	INT_TOP_2	R/W		Reserved						RESET_ REG_INT
0x1B	INT_BUCK	R/W	Reserved	BUCK1_ PG_INT	BUCK1_ SC_INT	BUCK1_ ILIM_INT	Reserved	BUCK0_ PG_INT	BUCK0_ SC_INT	BUCK0_ ILIM_INT
0x1C	INT_LDO	R/W	Reserved	LDO1_ PG_INT	LDO1_ SC_INT	LDO1_ ILIM_INT	Reserved	LDO0_ PG_INT	LDO0_ SC_INT	LDO0_ ILIM_INT
0x1D	TOP_ STAT	R	PGOOD_ST AT	Rese	erved	SYNC_CLK _STAT	TDIE_SD _STAT	TDIE_ WARN_ STAT	OVP_ STAT	Reserved
0x1E	BUCK_STA T	R	BUCK1_ STAT	BUCK1_ PG_STAT	Reserved	BUCK1_ ILIM_STAT	BUCK0_ STAT	BUCK0_ PG_STAT	Reserved	BUCK0_ ILIM_STAT
0x1F	LDO_STAT	R	LDO1_ STAT	LDO1_ PG_STAT	Reserved	LDO1_ ILIM_STAT	LDO0_ STAT	LDO0_ PG_STAT	Reserved	LDO0_ ILIM_STAT
0x20	TOP_ MASK_1	R/W	PGOOD_ INT_MASK	Rese	erved	SYNC_CLK _MASK	Reserved	TDIE_WAR N_MASK	Reserved	I_MEAS_ MASK
0x21	TOP_ MASK_2	R/W				Reserved				RESET_ REG_MASK
0x22	BUCK_MAS K	R/W	BUCK1_PG F_MASK	BUCK1_PG R_MASK	Reserved	BUCK1_ ILIM_ MASK	BUCK0_PG F_MASK	BUCK0_PG R_MASK	Reserved	BUCK0_ ILIM_ MASK
0x23	LDO_MASK	R/W	LDO1_PGF _MASK	LDO1_PGR _MASK	Reserved	LDO1_ ILIM_ MASK	LDO0_PGF _MASK	LDO0_PGR _MASK	Reserved	LDO0_ ILIM_ MASK
0x24	SEL_I_ LOAD	R/W		Reserved						LOAD_CUR RENT_ BUCK_SEL ECT
0x25	I_LOAD_2	R		Reserved					BUCK_LOA D_CURREN T[8]	
0x26	I_LOAD_1	R				BUCK_LOAD_	CURRENT[7:0]		

7.6.1.1 DEV_REV

Address: 0x00

www.ti.com.cn

DEVICE_ID[1:0]				Rese	rved		
D7 D6	;	D5	D4	D3	D2	D1	D0

Bits	Field	Туре	Default	Description
7:6	DEVICE_ID[1:0]	R	0x0*	Device specific ID code.
5:0	Reserved	R	00 0010	

7.6.1.2 OTP_REV

Address: 0x01

D7	D6	D5	D4	D3	D2	D1	D0
			OTP_	ID[7:0]			

Bits	Field	Туре	Default	Description
7:0	OTP_ID[7:0]	R	0x2B*	Identification Code of the OTP EPROM Version.

7.6.1.3 BUCK0_CTRL_1

Address: 0x02

D7	D6	D5	D4	D3	D2	D1	D0
	Rese	erved		BUCK0_FPWM	BUCK0_RDIS_	BUCK0_EN_PI	BUCK0_EN
					EN	N CTRL	

Bits	Field	Туре	Default	Description
7:4	Reserved	R/W	0000	
3	BUCK0_FPWM	R/W	1 *	Buck0 mode selection: 0 - Automatic transitions between PFM and PWM modes (AUTO mode) 1 - Forced to PWM operation.
2	BUCK0_RDIS_EN	R/W	1	Enable output discharge resistor (R _{DIS_Bx}) when Buck0 is disabled: 0 - Discharge resistor disabled 1 - Discharge resistor enabled.
1	BUCK0_EN_PIN _CTRL	R/W	1 *	Enable control for Buck0: 0 - only BUCK0_EN bit controls Buck0 1 - BUCK0_EN bit AND EN pin control Buck0.
0	BUCK0_EN	R/W	1 *	Enable Buck0 regulator: 0 - Buck0 regulator is disabled 1 - Buck0 regulator is enabled.

7.6.1.4 BUCK0_CTRL_2

D7 D6	D5	D4	D3	D2	D1	D0
Reserved		BUCK0_ILIM[2:0]		BUC	K0_SLEW_RATE	[2:0]

Bits	Field	Туре	Default	Description
7:6	Reserved	R/W	00	
5:3	BUCK0_ILIM[2:0]	R/W	0x5*	Sets the switch current limit of Buck0. Can be programmed at any time during operation: 0x0 - 1.5 A 0x1 - 2.0 A 0x2 - 2.5 A 0x3 - 3.0 A 0x4 - 3.5 A 0x5 - 4.0 A 0x6 - Reserved 0x7 - Reserved
2:0	BUCK0_SLEW_RA TE[2:0]	R/W	0x4*	Sets the output voltage slew rate for Buck0 regulator (rising and falling edges): 0x0 - Reserved 0x1 - Reserved 0x2 - 10 mV/µs 0x3 - 7.5 mV/µs 0x4 - 3.8 mV/µs 0x5 - 1.9 mV/µs 0x6 - 0.94 mV/µs 0x7 - 0.47 mV/µs

7.6.1.5 BUCK1_CTRL_1

Address: 0x04

D7	D6	D5	D4	D3	D2	D1	D0
	Rese	erved		BUCK1_FPWM	BUCK1_RDIS_	BUCK1_EN_PI	BUCK1_EN
					EN	N_CTRL	

Bits	Field	Туре	Default	Description
7:4	Reserved	R/W	0000	
3	BUCK1_FPWM	R/W	1 *	Buck1 mode selection: 0 - Automatic transitions between PFM and PWM modes (AUTO mode) 1 - Forced to PWM operation.
2	BUCK1_RDIS_EN	R/W	1	Enable output discharge resistor (R _{DIS_Bx}) when Buck1 is disabled: 0 - Discharge resistor disabled 1 - Discharge resistor enabled.
1	BUCK1_EN_PIN _CTRL	R/W	1 *	Enable control for Buck1: 0 - only BUCK1_EN bit controls Buck1 1 - BUCK1_EN bit AND EN pin control Buck1.
0	BUCK1_EN	R/W	1 *	Enable Buck1 regulator: 0 - Buck1 regulator is disabled 1 - Buck1 regulator is enabled.

7.6.1.6 BUCK1_CTRL_2

D7	D6	D5	D4	D3	D2	D1	D0	
Reserved		BUCK1_ILIM[2:0]			BUCK1_SLEW_RATE[2:0]			

www.ti.com.cn

Bits Field Default Description Type 7:6 Reserved R/W 00 BUCK1_ILIM[2:0] R/W 0x5* Sets the switch current limit of Buck1. Can be programmed at any time during 5:3 operation: 0x0 - 1.5 A 0x1 - 2.0 A 0x2 - 2.5 A 0x3 - 3.0 A 0x4 - 3.5 A 0x5 - 4.0 A 0x6 - Reserved 0x7 - Reserved BUCK1_SLEW_RA 2:0 R/W 0x4* Sets the output voltage slew rate for Buck1 regulator (rising and falling edges): TE[2:0] 0x0 - Reserved 0x1 - Reserved 0x2 - 10 mV/μs 0x3 - 7.5 mV/μs 0x4 - 3.8 mV/µs 0x5 - 1.9 mV/µs 0x6 - 0.94 mV/μs 0x7 - 0.47 mV/μs

7.6.1.7 BUCK0_VOUT

Address: 0x06

D7	D6	D5	D4	D3	D2	D1	D0			
	BUCK0_VSET[7:0]									

Bits	Field	Туре	Default	Description
7:0	BUCK0_VSET[7:0]	R/W	0x80*	Sets the output voltage of Buck0 regulator Reserved, DO NOT USE 0x00 0x13 0.7 V - 0.73 V, 10 mV steps 0x14 - 0.7V 0x17 - 0.73 V 0.73 V - 1.4 V, 5 mV steps 0x18 - 0.735 V 0x9D - 1.4 V 1.4 V - 3.36 V, 20 mV steps 0x9E - 1.42 V 0xFF - 3.36 V

7.6.1.8 BUCK1_VOUT

D7	D6	D5	D4	D3	D2	D1	D0		
BUCK1 VSETI7:01									

Bits	Field	Туре	Default	Description
7:0	BUCK1_VSET[7:0]	R/W	0xFC*	Sets the output voltage of Buck0 regulator Reserved, DO NOT USE 0x00 0x13 0.7 V - 0.73 V, 10 mV steps 0x14 - 0.7V 0x17 - 0.73 V 0.73 V - 1.4 V, 5 mV steps 0x18 - 0.735 V 0x9D - 1.4 V 1.4 V - 3.36 V, 20 mV steps 0x9E - 1.42 V 0xFF - 3.36 V

7.6.1.9 LDO0_CTRL

Address: 0x08

D7	D6	D5	D4	D3	D2	D1	D0
		Reserved	LDO0_RDIS_E	LDO0_EN_PIN	LDO0_EN		
			N	_CTRL			

Bits	Field	Туре	Default	Description
7:3	Reserved	R/W	0 0000	
2	LDO0_RDIS_EN	R/W	1	Enable output discharge resistor (R _{DIS_LDOx}) when LDO0 is disabled: 0 - Discharge resistor disabled 1 - Discharge resistor enabled.
1	LDO0_EN_PIN _CTRL	R/W	1 *	Enable control for LDO0: 0 - only LDO0_EN bit controls LDO0 1 - LDO0_EN bit AND EN pin control LDO0.
0	LDO0_EN	R/W	1 *	Enable LD00 regulator: 0 - LD00 regulator is disabled 1 - LD00 regulator is enabled.

7.6.1.10 LDO1_CTRL

D7	D6	D5	D4	D3	D2	D1	D0
		Reserved	LDO1_RDIS_E	LDO1_EN_PIN	LDO1_EN		
			N	CTRL			

Bits	Field	Туре	Default	Description
7:3	Reserved	R/W	0 0000	
2	LDO1_RDIS_EN	R/W	1	Enable output discharge resistor (R _{DIS_LDOx}) when LDO1 is disabled: 0 - Discharge resistor disabled 1 - Discharge resistor enabled.
1	LDO1_EN_PIN _CTRL	R/W	1 *	Enable control for LDO1: 0 - only LDO1_EN bit controls LDO1 1 - LDO1_EN bit AND EN pin control LDO1.
0	LDO1_EN	R/W	1 *	Enable LDO1 regulator: 0 - LDO1 regulator is disabled 1 - LDO1 regulator is enabled.

7.6.1.11 LDO0_VOUT

www.ti.com.cn

Address: 0x0A

D7	D6	D5	D4	D3	D2	D1	D0
	Reserved				LDO0_VSET[4:0]		

Bits	Field	Туре	Default	Description
7:5	Reserved	R/W	000	
4:0	LDO0_VSET[4:0]	R/W	0x19*	Sets the output voltage of LDO0 regulator 0.8 V - 3.3 V, 100 mV steps 0x00 - 0.8V 0x19 - 3.3 V Reserved, DO NOT USE 0x1A 0x1F

7.6.1.12 LDO1_VOUT

Address: 0x0B

D7	D6	D5	D4	D3	D2	D1	D0
	Reserved				LDO1_VSET[4:0]		

Bits	Field	Туре	Default	Description
7:5	Reserved	R/W	000	
4:0	LDO1_VSET[4:0]	R/W	0x19*	Sets the output voltage of LDO1 regulator 0.8 V - 3.3 V, 100 mV steps 0x00 - 0.8V 0x19 - 3.3 V Reserved, DO NOT USE 0x1A 0x1F

7.6.1.13 BUCKO_DELAY

Address: 0x0C

D7	D6	D5	D4	D3	D2	D1	D0
	BUCK0_SHUTDO	DWN_DELAY[3:0]			BUCK0_START	UP_DELAY[3:0]	

Bits	Field	Туре	Default	Description
7:4	BUCK0_ SHUTDOWN_ DELAY[3:0]	R/W	0x0*	Shutdown delay of Buck0 from falling edge of EN signal: 0x0 - 0 ms 0x1 - 0.5 ms (1 ms if SHUTDOWN_DELAY_SEL=1 in CONFIG register) 0xF - 7.5 ms (15 ms if SHUTDOWN_DELAY_SEL=1 in CONFIG register)
3:0	BUCK0_ STARTUP_ DELAY[3:0]	R/W	0x0*	Startup delay of Buck0 from rising edge of EN signal: 0x0 - 0 ms 0x1 - 0.5 ms (1 ms if STARTUP_DELAY_SEL=1 in CONFIG register) 0xF - 7.5 ms (15 ms if STARTUP_DELAY_SEL=1 in CONFIG register)

7.6.1.14 BUCK1_DELAY

D7	D6	D5	D4	D3	D2	D1	D0
	BUCK1_SHUTDO	DWN_DELAY[3:0]			BUCK1_START	UP_DELAY[3:0]	

LP87332B-Q1

Bits	Field	Туре	Default	Description
7:4	BUCK1_ SHUTDOWN_ DELAY[3:0]	R/W	0x0*	Shutdown delay of Buck1 from falling edge of EN signal: 0x0 - 0 ms 0x1 - 0.5 ms (1 ms if SHUTDOWN_DELAY_SEL=1 in CONFIG register) 0xF - 7.5 ms (15 ms if SHUTDOWN_DELAY_SEL=1 in CONFIG register)
3:0	BUCK1_ STARTUP_ DELAY[3:0]	R/W	0x0*	Startup delay of Buck1 from rising edge of EN signal: 0x0 - 0 ms 0x1 - 0.5 ms (1 ms if STARTUP_DELAY_SEL=1 in CONFIG register) 0xF - 7.5 ms (15 ms if STARTUP_DELAY_SEL=1 in CONFIG register)

7.6.1.15 LDO0_DELAY

Address: 0x0E

D7	D6	D5	D4	D3	D2	D1	D0
	LDO0_SHUTDO	WN_DELAY[3:0]			LDO0_STARTI	JP_DELAY[3:0]	

Bits	Field	Туре	Default	Description
7:4	LDO0_ SHUTDOWN_ DELAY[3:0]	R/W	0x0*	Shutdown delay of LDO0 from falling edge of EN signal: 0x0 - 0 ms 0x1 - 0.5 ms (1 ms if SHUTDOWN_DELAY_SEL=1 in CONFIG register) 0xF - 7.5 ms (15 ms if SHUTDOWN_DELAY_SEL=1 in CONFIG register)
3:0	LDO0_ STARTUP_ DELAY[3:0]	R/W	0x0*	Startup delay of LDO0 from rising edge of EN signal: 0x0 - 0 ms 0x1 - 0.5 ms (1 ms if STARTUP_DELAY_SEL=1 in CONFIG register) 0xF - 7.5 ms (15 ms if STARTUP_DELAY_SEL=1 in CONFIG register)

7.6.1.16 LDO1_DELAY

Address: 0x0F

D7	D6	D5	D4	D3	D2	D1	D0
	LDO1 SHUTDO	WN DELAY[3:0]			LDO1 STARTU	JP DELAY[3:0]	

Bits	Field	Туре	Default	Description
7:4	LDO1_ SHUTDOWN_ DELAY[3:0]	R/W	0x0*	Shutdown delay of LDO1 from falling edge of EN signal: 0x0 - 0 ms 0x1 - 0.5 ms (1 ms if SHUTDOWN_DELAY_SEL=1 in CONFIG register) 0xF - 7.5 ms (15 ms if SHUTDOWN_DELAY_SEL=1 in CONFIG register)
3:0	LDO1_ STARTUP_ DELAY[3:0]	R/W	0x0*	Startup delay of LDO1 from rising edge of EN signal: 0x0 - 0 ms 0x1 - 0.5 ms (1 ms if STARTUP_DELAY_SEL=1 in CONFIG register) 0xF - 7.5 ms (15 ms if STARTUP_DELAY_SEL=1 in CONFIG register)

7.6.1.17 GPO_DELAY

Address: 0x10

D7	D6	D5	D4	D3	D2	D1	D0
	GPO_SHUTDO	WN_DELAY[3:0]			GPO_STARTL	JP_DELAY[3:0]	

Bits	Field	Туре	Default	Description
7:4	GPO_ SHUTDOWN_ DELAY[3:0]	R/W	0x0*	Delay for GPO falling edge from falling edge of EN signal: 0x0 - 0 ms 0x1 - 0.5 ms (1 ms if SHUTDOWN_DELAY_SEL=1 in CONFIG register) 0xF - 7.5 ms (15 ms if SHUTDOWN_DELAY_SEL=1 in CONFIG register)

Texas Instruments

www.ti.com.cn

Bit	Field	Type	Default	Description
3:0	GPO_ STARTUP_ DELAY[3:0]	R/W	0x0*	Delay for GPO rising edge from rising edge of EN signal: 0x0 - 0 ms 0x1 - 0.5 ms (1 ms if STARTUP_DELAY_SEL=1 in CONFIG register) 0xF - 7.5 ms (15 ms if STARTUP_DELAY_SEL=1 in CONFIG register)

7.6.1.18 GPO2_DELAY

Address: 0x11

D7	D6	D5	D4	D3	D2	D1	D0
	GPO2_SHUTDO	WN_DELAY[3:0]			GPO2_STARTI	UP_DELAY[3:0]	

Bits	Field	Туре	Default	Description
7:4	GPO2_ SHUTDOWN_ DELAY[3:0]	R/W	0x0*	Delay for GPO2 falling edge from falling edge of EN signal: 0x0 - 0 ms 0x1 - 0.5 ms (1 ms if SHUTDOWN_DELAY_SEL=1 in CONFIG register) 0xF - 7.5 ms (15 ms if SHUTDOWN_DELAY_SEL=1 in CONFIG register)
3:0	GPO2_ STARTUP_ DELAY[3:0]	R/W	0x0*	Delay for GPO2 rising edge from rising edge of EN signal: 0x0 - 0 ms 0x1 - 0.5 ms (1 ms if STARTUP_DELAY_SEL=1 in CONFIG register) 0xF - 7.5 ms (15 ms if STARTUP_DELAY_SEL=1 in CONFIG register)

7.6.1.19 GPO_CTRL

D7	D6	D5	D4	D3	D2	D1	D0
Reserved	GPO2_OD	GPO2_EN_PIN CTRL	GPO2_EN	Reserved	GPO_OD	GPO_EN_PIN_ CTRL	GPO_EN

Bits	Field	Туре	Default	Description
7	Reserved	R	0	
6	GP02_OD	R/W	1 *	GPO2 signal type when configured as General Purpose Output (CLKIN pin): 0 - Push-pull output (VANA level) 1 - Open-drain output
5	GPO2_EN_PIN_C TRL	R/W	0 *	Control for GPO2: 0 - Only GPO2_EN bit controls GPO2 1 - GPO2_EN bit AND EN pin control GPO2.
4	GPO2_EN	R/W	0 *	Output level of GPO2 signal (when configured as General Purpose Output): 0 - Logic low level 1 - Logic high level
3	Reserved	R	0	
2	GPO_OD	R/W	1 *	GPO signal type: 0 - Push-pull output (VANA level) 1 - Open-drain output
1	GPO_EN_PIN_CT RL	R/W	0 *	Control for GPO: 0 - Only GPO_EN bit controls GPO 1 - GPO_EN bit AND EN pin control GPO.
0	GPO_EN	R/W	0 *	Output level of GPO signal: 0 - Logic low level 1 - Logic high level

7.6.1.20 CONFIG

Address: 0x13

D7	D6	D5	D4	D3	D2	D1	D0
Reserved	STARTUP_DE LAY_SEL	SHUTDOWN_ DELAY_SEL	CLKIN_PIN_SE L	CLKIN_PD	EN2_PD	TDIE_WARN_ LEVEL	EN_SPREAD _SPEC

Bits	Field	Туре	Default	Description
7	Reserved	R/W	0	
6	STARTUP_DELAY _SEL	R/W	0 *	Startup delay range from EN signals. 0 - 0 ms - 7.5 ms with 0.5 ms steps 1 - 0 ms - 15 ms with 1 ms steps
5	SHUTDOWN_DEL AY_SEL	R/W	0 *	Shutdown delay range from EN signals. 0 - 0 ms - 7.5 ms with 0.5 ms steps 1 - 0 ms - 15 ms with 1 ms steps
4	CLKIN_PIN_SEL	R/W	1 *	CLKIN pin function: 0 - GPO2 1 - CLKIN
3	CLKIN_PD	R/W	1 *	Selects the pull down resistor on the CLKIN input pin. (valid also when selected as GPO2) 0 - Pull-down resistor is disabled. 1 - Pull-down resistor is enabled.
2	EN_PD	R/W	1 *	Selects the pull down resistor on the EN input pin. 0 - Pull-down resistor is disabled. 1 - Pull-down resistor is enabled.
1	TDIE_WARN_ LEVEL	R/W	1 *	Thermal warning threshold level. 0 - 125°C 1 - 137°C.
0	EN_SPREAD _SPEC	R/W	1 *	Enable spread spectrum feature: 0 - Disabled 1 - Enabled

7.6.1.21 PLL_CTRL

Address: 0x14

D7	D6	D5	D4	D3	D2	D1	D0
Reserved	EN_PLL	Reserved		E	XT_CLK_FREQ[4:	[0]	

Bits	Field	Туре	Default	Description
7	Reserved	R/W	0	
6	EN_PLL	R/W	0 *	Selection of external clock and PLL operation: 0 - Forced to internal RC oscillator. PLL disabled. 1 - PLL is enabled in STANDBY and ACTIVE modes. Automatic external clock use when available, interrupt generated if external clock appears or disappears.
5	Reserved	R/W	0	This bit must be set to '0'.
4:0	EXT_CLK_FREQ[4 :0]	R/W	0x01*	Frequency of the external clock (CLKIN): 0x00 - 1 MHz 0x01 - 2 MHz 0x02 - 3 MHz 0x16 - 23 MHz 0x17 - 24 MHz 0x180x1F - Reserved See electrical specification for input clock frequency tolerance.

Texas Instruments

7.6.1.22 PGOOD_CTRL_1

Address: 0x15

www.ti.com.cn

D7	D6	D5	D4	D3	D2	D1	D0
PGOOD_POL	PGOOD_OD	PGOOD_ WINDOW_LDO	PGOOD_ WINDOW_BUC	EN_PGOOD_L DO1	EN_PGOOD_L DO0	EN_PGOOD_B UCK1	EN_PGOOD_B UCK0

Bits	Field	Туре	Default	Description
7	PGOOD_POL	R/W	0 *	PGOOD signal polarity. 0 - PGOOD signal high when monitored outputs are valid 1 - PGOOD signal low when monitored outputs are valid
6	PGOOD_OD	R/W	1 *	PGOOD signal type: 0 - Push-pull output (VANA level) 1 - Open-drain output
5	PGOOD_ WINDOW_LDO	R/W	1 *	LDO Output voltage monitoring method for PGOOD signal: 0 - Only undervoltage monitoring 1 - Overvoltage and undervoltage monitoring.
4	PGOOD_ WINDOW_BUCK	R/W	1 *	Buck Output voltage monitoring method for PGOOD signal: 0 - Only undervoltage monitoring 1 - Overvoltage and undervoltage monitoring.
3	EN_PGOOD_LDO 1	R/W	0 *	PGOOD signal source control from LDO1 0 - LDO1 is not monitored 1 - LDO1 Power-Good threshold voltage monitored
2	EN_PGOOD_LDO 0	R/W	0 *	PGOOD signal source control from LDO0 0 - LDO0 is not monitored 1 - LDO0 Power-Good threshold voltage monitored
1	EN_PGOOD_BUC K1	R/W	0 *	PGOOD signal source control from Buck1 0 - Buck1 is not monitored 1 - Buck1 Power-Good threshold voltage monitored
0	EN_PGOOD_BUC K0	R/W	0 *	PGOOD signal source control from Buck0 0 - Buck0 is not monitored 1 - Buck0 Power-Good threshold voltage monitored

7.6.1.23 PGOOD_CTRL_2

Address: 0x16

D7	D6	D5	D4	D3	D2	D1	D0
		Reserved			EN_PGOOD_T	PG_FAULT_G	PGOOD_MOD
					WARN	ATES PGOOD	E

Bits	Field	Туре	Default	Description
7:3	Reserved	R/W	0 0000	
2	EN_PGOOD_TWA RN	R/W	0 *	Thermal warning control for PGOOD signal: 0 - Thermal warning not monitored 1 - PGOOD inactive if thermal warning flag is active.
1	PG_FAULT_GATE S_PGOOD	R/W	0 *	Type of operation for PGOOD signal: 0 - Indicates live status of monitored voltage outputs. 1 - Indicates status of PG_FAULT register, inactive when at least one PG_FAULT_x bit is inactive.
0	PGOOD_MODE	R/W	1 *	Operating mode for PGOOD signal: 0 - Gated mode 1 - Continuous mode

7.6.1.24 PG_FAULT

D7	D6	D5	D4	D3	D2	D1	D0
	Reserved				PG_FAULT_LD	PG_FAULT_BU	PG_FAULT_BU
				01	O0	CK1	CK0

Bits	Field	Туре	Default	Description
7:4	Reserved	R/W	0000	
3	PG_FAULT_LDO1	R/W	0	Source for PGOOD inactive signal: 0 - LDO1 has not set PGOOD signal inactive. 1 - LDO1 is selected for PGOOD signal and it has set PGOOD signal inactive. This bit can be cleared by writing '1' to this bit when LDO1 output is valid.
2	PG_FAULT_LDO0	R/W	0	Source for PGOOD inactive signal: 0 - LDO0 has not set PGOOD signal inactive. 1 - LDO0 is selected for PGOOD signal and it has set PGOOD signal inactive. This bit can be cleared by writing '1' to this bit when LDO0 output is valid.
1	PG_FAULT_BUCK 1	R/W	0	Source for PGOOD inactive signal: 0 - Buck1 has not set PGOOD signal inactive. 1 - Buck1 is selected for PGOOD signal and it has set PGOOD signal inactive. This bit can be cleared by writing '1' to this bit when Buck1 output is valid.
0	PG_FAULT_BUCK 0	R/W	0	Source for PGOOD inactive signal: 0 - Buck0 has not set PGOOD signal inactive. 1 - Buck0 is selected for PGOOD signal and it has set PGOOD signal inactive. This bit can be cleared by writing '1' to this bit when Buck0 output is valid.

7.6.1.25 RESET

Address: 0x18

D7	D6	D5	D4	D3	D2	D1	D0
			Reserved				SW_RESET

Bits	Field	Туре	Default	Description
7:1	Reserved	R/W	000 0000	
0	SW_RESET	R/W	0	Software commanded reset. When written to 1, the registers will be reset to default values, OTP memory is read, and the I ² C interface is reset. The bit is automatically cleared.

7.6.1.26 INT_TOP_1

D7	D6	D5	D4	D3	D2	D1	D0
PGOOD_INT	LDO_INT	BUCK_INT	SYNC_CLK_IN	TDIE_SD_INT	TDIE_WARN_I	OVP_INT	I_MEAS_INT
			Т		NT		

Bits	Field	Туре	Default	Description
7	PGOOD_INT	R/W	0	Latched status bit indicating that the PGOOD pin has changed from active to inactive. Write 1 to clear interrupt.
6	LDO_INT	R	0	Interrupt indicating that LDO1 and/or LDO0 have a pending interrupt. The reason for the interrupt is indicated in INT_LDO register. This bit is cleared automatically when INT_LDO register is cleared to 0x00.
5	BUCK_INT	R	0	Interrupt indicating that Buck1 and/or Buck0 have a pending interrupt. The reason for the interrupt is indicated in INT_BUCK register. This bit is cleared automatically when INT_BUCK register is cleared to 0x00.
4	SYNC_CLK_INT	R/W	0	Latched status bit indicating that the external clock has appeared or disappeared. Write 1 to clear interrupt.
3	TDIE_SD_INT	R/W	0	Latched status bit indicating that the die junction temperature has exceeded the thermal shutdown level. The regulators have been disabled if they were enabled and GPO and GPO2 signals are driven low. The regulators cannot be enabled if this bit is active. The actual status of the thermal shutdown is indicated by TDIE_SD_STAT bit in TOP_STAT register. Write 1 to clear interrupt.
2	TDIE_WARN_INT	R/W	0	Latched status bit indicating that the die junction temperature has exceeded the thermal warning level. The actual status of the thermal warning is indicated by TDIE_WARN_STAT bit in TOP_STAT register. Write 1 to clear interrupt.

www.ti.com.cn

Bits Default Description Field **Type** OVP_INT R/W 0 Latched status bit indicating that the input voltage has exceeded the over-voltage detection level. The regulators have been disabled if they were enabled and GPO and GPO2 signals are driven low. The actual status of the over-voltage is indicated by OVP_STAT bit in TOP_STAT register. Write 1 to clear interrupt. 0 I_MEAS_INT R/W 0 Latched status bit indicating that the load current measurement result is available in I_LOAD_1 and I_LOAD_2 registers. Write 1 to clear interrupt.

7.6.1.27 INT_TOP_2

Address: 0x1A

D7	D6	D5	D4	D3	D2	D1	D0
			Reserved				RESET_REG_I NT

Bits	Field	Туре	Default	Description
7:1	Reserved	R/W	000 0000	
0	RESET_REG_INT	R/W	0	Latched status bit indicating that either VANA supply voltage has been below undervoltage threshold level or the host has requested a reset using SW_RESET bit in RESET register. The regulators have been disabled, and registers are reset to default values and the normal startup procedure is done. Write 1 to clear interrupt.

7.6.1.28 INT_BUCK

Address: 0x1B

D7	D6	D5	D4	D3	D2	D1	D0
Reserved	BUCK1_PG INT	BUCK1_SC INT	BUCK1_ILIM INT	Reserved	BUCK0_PG INT	BUCK0_SC INT	BUCK0_ILIM INT

Bits	Field	Туре	Default	Description
7	Reserved	R/W	0	
6	BUCK1_PG_INT	R/W	0	Latched status bit indicating that Buck1 Power-Good event has been detected. Write 1 to clear.
5	BUCK1_SC_INT	R/W	0	Latched status bit indicating that the Buck1 output voltage has been over 1 ms below short-circuit threshold level. Write 1 to clear.
4	BUCK1_ILIM_INT	R/W	0	Latched status bit indicating that the Buck1 output current limit has been active. Write 1 to clear.
3	Reserved	R/W	0	
2	BUCK0_PG_INT	R/W	0	Latched status bit indicating that Buck0 Power-Good event has been detected. Write 1 to clear.
1	BUCK0_SC_INT	R/W	0	Latched status bit indicating that the Buck0 output voltage has been over 1 ms below short-circuit threshold level. Write 1 to clear.
0	BUCK0_ILIM_INT	R/W	0	Latched status bit indicating that the Buck0 output current limit has been active. Write 1 to clear.

7.6.1.29 INT_LDO

D7	D6	D5	D4	D3	D2	D1	D0
Reserved	LDO1_PG INT	LDO1_SC INT	LDO1_ILIM INT	Reserved	LDO0_PG INT	LDO0_SC INT	LDO0_ILIM _INT

J i3	Texas
·Y	Instruments

Bits	Field	Туре	Default	Description			
7	Reserved	R/W	0				
6	LDO1_PG_INT	R/W	0	Latched status bit indicating that LDO1 Power-Good event has been detected. Write 1 to clear.			
5	LDO1_SC_INT	R/W	0	Latched status bit indicating that the LDO1 output voltage has been over 1 ms below short-circuit threshold level. Write 1 to clear.			
4	LDO1_ILIM_INT	R/W	0	Latched status bit indicating that the LDO1 output current limit has been active. Write 1 to clear.			
3	Reserved	R/W	0				
2	LDO0_PG_INT	R/W	0	Latched status bit indicating that LDO0 Power-Good event has been detected. Write 1 to clear.			
1	LDO0_SC_INT	R/W	0	Latched status bit indicating that the LDO0 output voltage has been over 1 ms below short-circuit threshold level. Write 1 to clear.			
0	LDO0_ILIM_INT	R/W	0	Latched status bit indicating that the LDO0 output current limit has been active. Write 1 to clear.			

7.6.1.30 TOP_STAT

Address: 0x1D

D7	D6	D5	D4	D3	D2	D1	D0
PGOOD_STAT	Rese	erved	SYNC_CLK STAT	TDIE_SD STAT	TDIE_WARN STAT	OVP_STAT	Reserved

Bits	Field	Туре	Default	Description
7	PGOOD_STAT	R	0	Status bit indicating the status of PGOOD pin: 0 - PGOOD pin is inactive 1 - PGOOD pin is active
6:5	Reserved	R	00	
4	SYNC_CLK_STAT	R	0	Status bit indicating the status of external clock (CLKIN): 0 - External clock frequency is valid 1 - External clock frequency is not valid.
3	TDIE_SD_STAT	R	0	Status bit indicating the status of thermal shutdown: 0 - Die temperature below thermal shutdown level 1 - Die temperature above thermal shutdown level.
2	TDIE_WARN _STAT	R	0	Status bit indicating the status of thermal warning: 0 - Die temperature below thermal warning level 1 - Die temperature above thermal warning level.
1	OVP_STAT	R	0	Status bit indicating the status of input overvoltage monitoring: 0 - Input voltage below overvoltage threshold level 1 - Input voltage above overvoltage threshold level.
0	Reserved	R	0	

7.6.1.31 BUCK_STAT

D7	D6	D5	D4	D3	D2	D1	D0
BUCK1_STAT	BUCK1_PG _STAT	Reserved	BUCK1_ILIM _STAT	BUCK0_STAT	BUCK0_PG _STAT	Reserved	BUCK0_ILIM _STAT

Bits	Field	Туре	Default	Description
7	BUCK1_STAT	R	0	Status bit indicating the enable/disable status of Buck1: 0 - Buck1 regulator is disabled 1 - Buck1 regulator is enabled.
6	BUCK1_PG_STAT	R	0	Status bit indicating Buck1 output voltage validity (raw status) 0 - Buck1 output voltage is valid. 1 - Buck1 output voltage is invalid.

www.ti.com.cn ZHCSGT6 – JUNE 2017

Bits	Field	Туре	Default	Description
5	Reserved	R	0	
4	BUCK1_ILIM _STAT	R	0	Status bit indicating Buck1 current limit status (raw status) 0 - Buck1 output current is below current limit level 1 - Buck1 output current limit is active.
3	BUCK0_STAT	R	0	Status bit indicating the enable/disable status of Buck0: 0 - Buck0 regulator is disabled 1 - Buck0 regulator is enabled.
2	BUCK0_PG_STAT	R	0	Status bit indicating Buck0 output voltage validity (raw status) 0 - Buck0 output voltage is valid. 1 - Buck0 output voltage is invalid.
1	Reserved	R	0	
0	BUCK0_ILIM _STAT	R	0	Status bit indicating Buck0 current limit status (raw status) 0 - Buck0 output current is below current limit level 1 - Buck0 output current limit is active.

7.6.1.32 LDO_STAT

Address: 0x1F

D7	D6	D5	D4	D3	D2	D1	D0
LDO1_STAT	LDO1_PG _STAT	Reserved	LDO1_ILIM _STAT	LDO0_STAT	LDO0_PG STAT	Reserved	LDO0_ILIM _STAT

Bits	Field	Туре	Default	Description
7	LDO1_STAT	R	0	Status bit indicating the enable/disable status of LDO1: 0 - LDO1 regulator is disabled 1 - LDO1 regulator is enabled.
6	LDO1_PG_STAT	R	0	Status bit indicating LDO1 output voltage validity (raw status) 0 - LDO1 output voltage is valid. 1 - LDO1 output voltage is invalid.
5	Reserved	R	0	
4	LDO1_ILIM _STAT	R	0	Status bit indicating LDO1 current limit status (raw status) 0 - LDO1 output current is below current limit level 1 - LDO1 output current limit is active.
3	LDO0_STAT	R	0	Status bit indicating the enable/disable status of LDO0: 0 - LDO0 regulator is disabled 1 - LDO0 regulator is enabled.
2	LDO0_PG_STAT	R	0	Status bit indicating LDO0 output voltage validity (raw status) 0 - LDO0 output voltage is valid. 1 - LDO0 output voltage is invalid.
1	Reserved	R	0	
0	LDO0_ILIM _STAT	R	0	Status bit indicating LDO0 current limit status (raw status) 0 - LDO0 output current is below current limit level 1 - LDO0 output current limit is active.

7.6.1.33 TOP_MASK_1

D7	D6	D5	D4	D3	D2	D1	D0
PGOOD_INT_ MASK	Rese	erved	SYNC_CLK _MASK	Reserved	TDIE_WARN _MASK	Reserved	I_LOAD_ READY_MASK

Bits	Field	Туре	Default	Description
7	PGOOD_INT _MASK	R/W	1 *	Masking for Power-Good interrupt (PGOOD_INT in INT_TOP_1 register): 0 - Interrupt generated 1 - Interrupt not generated. This bit does not affect PGOOD_STAT status bit in TOP_STAT register.
6:5	Reserved	R/W	00	

ZHCSGT6 – JUNE 2017 www.ti.com.cn

Bits	Field	Туре	Default	Description
4	SYNC_CLK _MASK	R/W	1 *	Masking for external clock detection interrupt (SYNC_CLK_INT in INT_TOP_1 register): 0 - Interrupt generated 1 - Interrupt not generated. This bit does not affect SYNC_CLK_STAT status bit in TOP_STAT register.
3	Reserved	R/W	0	
2	TDIE_WARN _MASK	R/W	0 *	Masking for thermal warning interrupt (TDIE_WARN_INT in INT_TOP_1 register): 0 - Interrupt generated 1 - Interrupt not generated. This bit does not affect TDIE_WARN_STAT status bit in TOP_STAT register.
1	Reserved	R/W	0	
0	I_MEAS _MASK	R/W	1 *	Masking for load current measurement ready interrupt (MEAS_INT in INT_TOP_1 register). 0 - Interrupt generated 1 - Interrupt not generated.

7.6.1.34 TOP_MASK_2

Address: 0x21

LP87332B-Q1

D7	D6	D5	D4	D3	D2	D1	D0
			Reserved				RESET_REG
							_MASK

Bits	Field	Туре	Default	Description
7:1	Reserved	R/W	000 0000	
0	RESET_REG _MASK	R/W	1 *	Masking for register reset interrupt (RESET_REG_INT in INT_TOP_2 register): 0 - Interrupt generated 1 - Interrupt not generated. This change of this bit by I ² C writing has no effect because it will be read from OTP memory during reset.

7.6.1.35 BUCK_MASK

D7	D6	D5	D4	D3	D2	D1	D0
BUCK1_PGF _MASK	BUCK1_PGR _MASK	Reserved	BUCK1_ILIM _MASK	BUCK0_PGF _MASK	BUCK0_PGR _MASK	Reserved	BUCK0_ILIM _MASK

Bits	Field	Туре	Default	Description	
7	BUCK1_PGF_MAS K	R/W	1 *	Masking of Power Good invalid detection for Buck1 power good interrupt (BUCK1_PG_INT in INT_BUCK register): 0 - Interrupt generated 1 - Interrupt not generated. This bit does not affect BUCK1_PG_STAT status bit in BUCK_STAT register.	
6	BUCK1_PGR_MAS K	R/W	1 *	Masking of Power Good valid detection for Buck1 Power Good interrupt (BUCK1_PG_INT in INT_BUCK register): 0 - Interrupt generated 1 - Interrupt not generated. This bit does not affect BUCK1_PG_STAT status bit in BUCK_STAT register.	
5	Reserved	R	0		
4	BUCK1_ILIM _MASK	R/W	1 *	Masking for Buck1 current limit detection interrupt (BUCK1_ILIM_INT in INT_BUCK register): 0 - Interrupt generated 1 - Interrupt not generated. This bit does not affect BUCK1_ILIM_STAT status bit in BUCK_STAT register.	
3	BUCK0_PGF_MAS K	R/W	1 *	Masking of Power Good invalid detection for Buck0 power good interrupt (BUCK0_PG_INT in INT_BUCK register): 0 - Interrupt generated 1 - Interrupt not generated. This bit does not affect BUCK0_PG_STAT status bit in BUCK_STAT register.	

ZHCSGT6-JUNE 2017 www.ti.com.cn

Bits	Field	Туре	Default	Description
2	BUCK0_PGR_MAS K	R/W	1 *	Masking of Power Good valid detection for Buck0 power good interrupt (BUCK0_PG_INT in INT_BUCK register): 0 - Interrupt generated 1 - Interrupt not generated. This bit does not affect BUCK0_PG_STAT status bit in BUCK_STAT register.
1	Reserved	R	0	
0	BUCKO_ILIM _MASK	R/W	1 *	Masking for Buck0 current limit detection interrupt (BUCK0_ILIM_INT in INT_BUCK register): 0 - Interrupt generated 1 - Interrupt not generated. This bit does not affect BUCK0_ILIM_STAT status bit in BUCK_STAT register.

7.6.1.36 LDO_MASK

Address: 0x23

D7	D6	D5	D4	D3	D2	D1	D0
LDO1_PGF MASK	LDO1_PGR MASK	Reserved	LDO1_ILIM MASK	LDO0_PGF MASK	LDO0_PGR MASK	Reserved	LDO0_ILIM MASK

Bits	Field	Type	Default	Description			
7	LDO1_PGF_MASK	R/W	1 *	Masking of Power Good invalid detection for LDO1 power good interrupt (LDO1_PG_INT in INT_LDO register): 0 - Interrupt generated 1 - Interrupt not generated. This bit does not affect LDO1_PG_STAT status bit in LDO_STAT register.			
6	LDO1_PGR_MASK	R/W	1 *	Masking of Power Good valid detection for LDO1 power good interrupt (LDO1_PG_INT in INT_LDO register): 0 - Interrupt generated 1 - Interrupt not generated. This bit does not affect LDO1_PG_STAT status bit in LDO_STAT register.			
5	Reserved	R	0				
4	LDO1_ILIM _MASK	R/W	1 *	Masking for LDO1 current limit detection interrupt (LDO1_ILIM_INT in INT_LDO register): 0 - Interrupt generated 1 - Interrupt not generated. This bit does not affect LDO1_ILIM_STAT status bit in LDO_STAT register.			
3	LDO0_PGF_MASK	R/W	1 *	Masking of Power Good invalid detection for LDO0 power good interrupt (LDO0_PG_INT in INT_LDO register): 0 - Interrupt generated 1 - Interrupt not generated. This bit does not affect LDO0_PG_STAT status bit in LDO_STAT register.			
2	LDO0_PGR_MASK	R/W	1 *	Masking of Power Good valid detection for LDO0 power good interrupt (LDO0_PG_INT in INT_LDO register): 0 - Interrupt generated 1 - Interrupt not generated. This bit does not affect LDO0_PG_STAT status bit in LDO_STAT register.			
1	Reserved	R	0				
0	LDO0_ILIM _MASK	R/W	1 *	Masking for LDO0 current limit detection interrupt (LDO0_ILIM_INT in INT_LDO register): 0 - Interrupt generated 1 - Interrupt not generated. This bit does not affect LDO0_ILIM_STAT status bit in LDO_STAT register.			

7.6.1.37 SEL_I_LOAD

D7	D6	D5	D4	D3	D2	D1	D0
			Reserved				LOAD_CURRE NT_BUCK
							_SELECT

ZHCSGT6 – JUNE 2017 www.ti.com.cn

Bits	Field	Туре	Default	Description
7:1	Reserved	R/W	000 0000	
0	LOAD_CURRENT_ BUCK_SELECT	R/W	0	Start the current measurement on the selected regulator: 0 - Buck0 1 - Buck1 The measurement is started when register is written.

7.6.1.38 I_LOAD_2

Address: 0x25

LP87332B-Q1

D7	D6	D5	D4	D3	D2	D1	D0
			Reserved				BUCK_LOAD_
							CURRENT[8]

Bits	Field	Туре	Default	Description
7:1	Reserved	R	000 0000	
0	BUCK_LOAD_ CURRENT[8]	R	0	This register describes the MSB bit of the average load current on selected regulator with a resolution of 20 mA per LSB and maximum 10.22-A current.

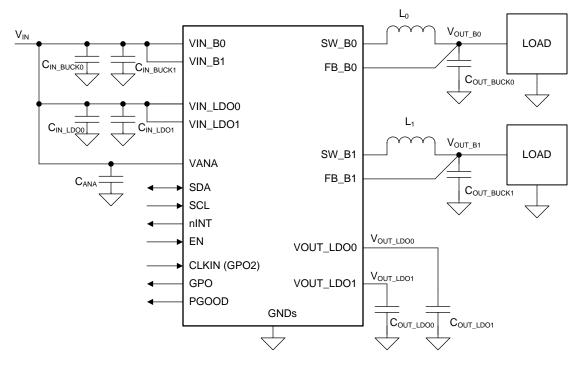
7.6.1.39 I_LOAD_1

D7	D6	D5	D4	D3	D2	D1	D0
			BUCK_LOAD_	CURRENT[7:0]			

Bits	Field	Туре	Default	Description
7:0	BUCK_LOAD_ CURRENT[7:0]	R	0000 0000	This register describes 8 LSB bits of the average load current on selected regulator with a resolution of 20 mA per LSB and maximum 10.22-A current.

ZHCSGT6-JUNE 2017 www.ti.com.cn

Application and Implementation


注

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The LP87332B-Q1 is a power management unit including two step-down regulators, two linear regulators, and two general-purpose digital output signals.

8.2 Typical Application

Copyright © 2017, Texas Instruments Incorporated

图 25. LP87332B-Q1 Typical Application

8.2.1 Design Requirements

8.2.1.1 Inductor Selection

The inductors L₀ and L₁ are shown in the *Typical Application*. The inductance and DCR of the inductor affects the control loop of the buck regulator. TI recommends using inductors similar to those listed in 表 8. Pay attention to the saturation current and temperature rise current of the inductor. Check that the saturation current is higher than the peak current limit and the temperature rise current is higher than the maximum expected rms output current. Minimum effective inductance to ensure good performance is 0.22 µH at maximum peak output current over the operating temperature range. DC resistance of the inductor must be less than 0.05 Ω for good efficiency at high-current condition. The inductor AC loss also affects conversion efficiency. Higher Q factor at switching frequency usually gives better efficiency at light load to middle load. Shielded inductors are preferred as they radiate less noise.

TEXAS INSTRUMENTS

Typical Application (接下页)

表 8. Recommended Inductors

MANUFACTURE R	PART NUMBER	VALUE	DIMENSIONS L × W × H (mm)	RATED DC CURRENT I _{SAT} maximum (typical) / I _{TEMP} maximum (typical) (A)	DCR typical / maximum (mΩ)
TOKO	DFE252012PD-R47M	0.47 µH (20%)	2.5 × 2 × 1.2	5.2 (–) / 4 (–) ⁽¹⁾	— / 27
Tayo Yuden	MDMK2020TR47MMV	0.47 µH (20%)	2 × 2 ×1.2	4.2 (4.8) / 2.3 (2.45)	40 / 46

⁽¹⁾ Operating temperature range is up to 125°C including self temperature rise.

8.2.1.2 Buck Input Capacitor Selection

The input capacitors C_{IN_BUCK0} and C_{IN_BUCK1} are shown in the *Typical Application*. A ceramic input bypass capacitor of 10 μ F is required for each phase of the regulator. Place the input capacitor as close as possible to the VIN_Bx pin and PGND_Bx pin of the device. A larger value or higher voltage rating improves the input voltage filtering. Use X7R type of capacitors, not Y5V or F. Also the DC bias characteristics capacitors must be considered. Minimum effective input capacitance to ensure good performance is 1.9 μ F per buck input at maximum input voltage including tolerances, ambient temperature range and aging. This is assuming that there are at least 22 μ F of additional capacitance common for all the power input pins on the system power rail. See $\frac{1}{2}$ $\frac{1}{$

The input filter capacitor supplies current to the high-side FET switch in the first half of each cycle and reduces voltage ripple imposed on the input power source. A ceramic capacitor's low ESR provides the best noise filtering of the input voltage spikes due to this rapidly changing current. Select an input filter capacitor with sufficient ripple current rating. In addition ferrite can be used in front of the input capacitor to reduce the EMI.

表 9. Recommended Buck Input Capacitor (X7R Dielectric)

MANUFACTURER	PART NUMBER	VALUE	CASE SIZE	DIMENSIONS L × W × H (mm)	VOLTAGE RATING
Murata	GCM21BR71A106KE22	10 μF (10%)	0805	2 × 1.25 × 1.25	10 V

8.2.1.3 Buck Output Capacitor Selection

The output capacitor C_{OUT_BUCK0} and C_{OUT_BUCK1} are shown in *Typical Application*. A ceramic local output capacitor of 22 μ F is required per phase. Use ceramic capacitors, X7R type; do not use Y5V or F. DC bias voltage characteristics of ceramic capacitors must be considered. The output filter capacitor smooths out current flow from the inductor to the load, helps maintain a steady output voltage during transient load changes and reduces output voltage ripple. These capacitors must be selected with sufficient capacitance and sufficiently low ESR and ESL to perform these functions. Minimum effective output capacitance to ensure good performance is 10 μ F per phase including the DC voltage roll-off, tolerances, aging, and temperature effects.

The output voltage ripple is caused by the charging and discharging of the output capacitor and also due to its R_{ESR} . The R_{ESR} is frequency dependent (as well as temperature dependent); make sure the value used for selection process is at the switching frequency of the part. See $\frac{10}{5}$ 10.

POL capacitors can be used to improve load transient performance and to decrease the ripple voltage. A higher output capacitance improves the load step behavior and reduces the output voltage ripple as well as decreases the PFM switching frequency. However, output capacitance higher than 150 μF per phase is not necessarily of any benefit. Note that the output capacitor may be the limiting factor in the output voltage ramp, see Specifications for maximum output capacitance for different slew-rate settings. For large output capacitors, the output voltage might be slower than the programmed ramp rate at voltage transitions, because of the higher energy stored on the output capacitance. Also at start-up, the time required to charge the output capacitor to target value might be longer. At shutdown the output voltage is discharged to 0.6 V level using forced-PWM operation. This can increase the input voltage if the load current is small and the output capacitor is large compared to input capacitor. Below 0.6 V level the output capacitor is discharged by the internal discharge resistor and with large capacitor more time is required to settle V_{OUT} down as a consequence of the increased time constant.

www.ti.com.cn

表 10. Recommended Buck Output Capacitors (X7R Dielectric)

MANUFACTURER	PART NUMBER	VALUE	CASE SIZE	DIMENSIONS L × W × H (mm)	VOLTAGE RATING
Murata	GCM31CR71A226KE02	22 μF (10%)	1206	3.2 × 1.6 × 1.6	10 V

8.2.1.4 LDO Input Capacitor Selection

The input capacitors C_{IN LDO0} and C_{IN LDO1} are shown in the 图 25. A ceramic input capacitor of 2.2 μF, 6.3 V is sufficient for most applications. Place the input capacitor as close as possible to the VIN_LDOx pin and AGND pin of the device. A larger value or higher voltage rating improves the input voltage filtering. Use X7R type of capacitors, not Y5V or F, DC bias characteristics of capacitors must be considered, minimum effective input capacitance to ensure good performance is 0.6 μF per LDO input at maximum input voltage including tolerances, ambient temperature range and aging. See 表 11.

表 11. Recommended LDO Input Capacitors (X7R Dielectric)

MANUFACTURER	PART NUMBER	VALUE	CASE SIZE	DIMENSIONS L × W × H (mm)	VOLTAGE RATING
Murata	GCM188R70J225KE22	2.2 µF (10%)	0603	$1.6 \times 0.8 \times 0.8$	6.3 V
Murata	GCM21BR71C475KA73	4.7 µF (10%)	0805	2 × 1.25 × 1.25	16 V

8.2.1.5 LDO Output Capacitor Selection

The output capacitors C_{OUT LDO0} and C_{OUT LDO1} are shown in the Typical Application. A ceramic output capacitor of minimum 1.0 μF is required. Place the output capacitor as close to the VOUT_LDOx pin and AGND pin of the device as possible. Use X7R type of capacitors, not Y5V or F. DC bias characteristics of capacitors must be considered, minimum effective output capacitance to ensure good performance is 0.4 µF per LDO input at maximum input voltage including tolerances, ambient temperature range and aging. See 表 12.

The output capacitance must be smaller than the input capacitance in order to ensure the stability of the LDO. With a 1-μF output capacitor it is recommended to use at least 2.2-μF input capacitor; with a 2.2-μF output capacitor at least 4.7-μF input capacitance.

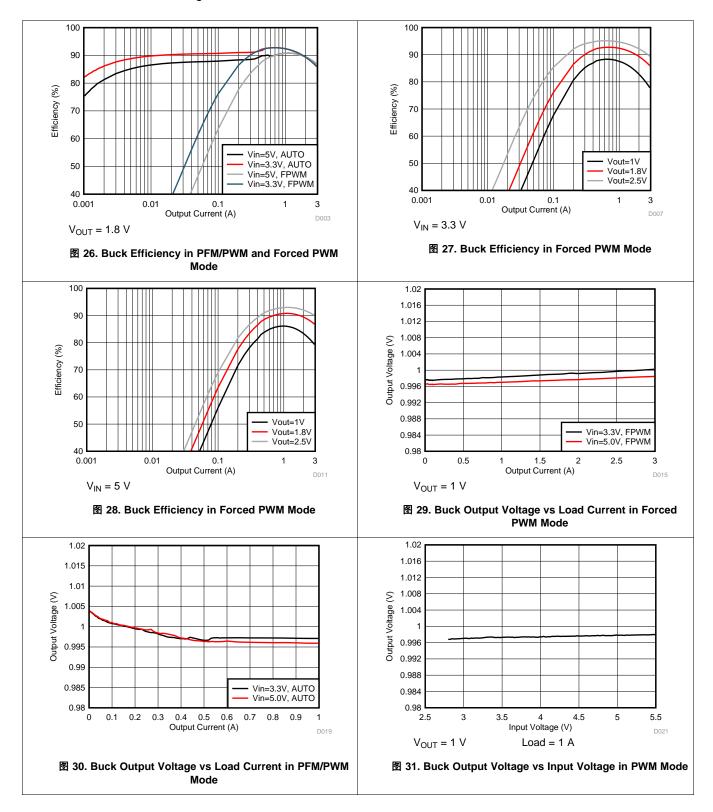
The VANA input is used to supply analog and digital circuits in the device. See 表 13 for recommended components from for VANA input supply filtering.

表 12. Recommended LDO Output Capacitors (X7R Dielectric)

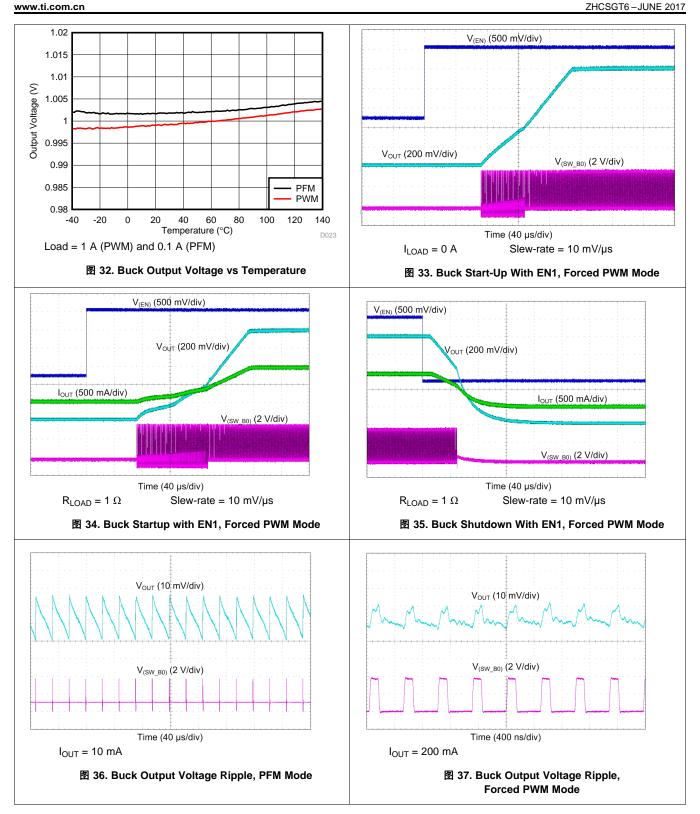
MANUFACTURER	PART NUMBER	VALUE	CASE SIZE	DIMENSIONS L × W × H (mm)	VOLTAGE RATING
Murata	GCM188R71C105KA64	1 µF (10%)	0603	$1.6 \times 0.8 \times 0.8$	16 V
Murata	GCM188R70J225KE22	2.2 µF (10%)	0603	$1.6 \times 0.8 \times 0.8$	6.3 V

表 13. Recommended Supply Filtering Components

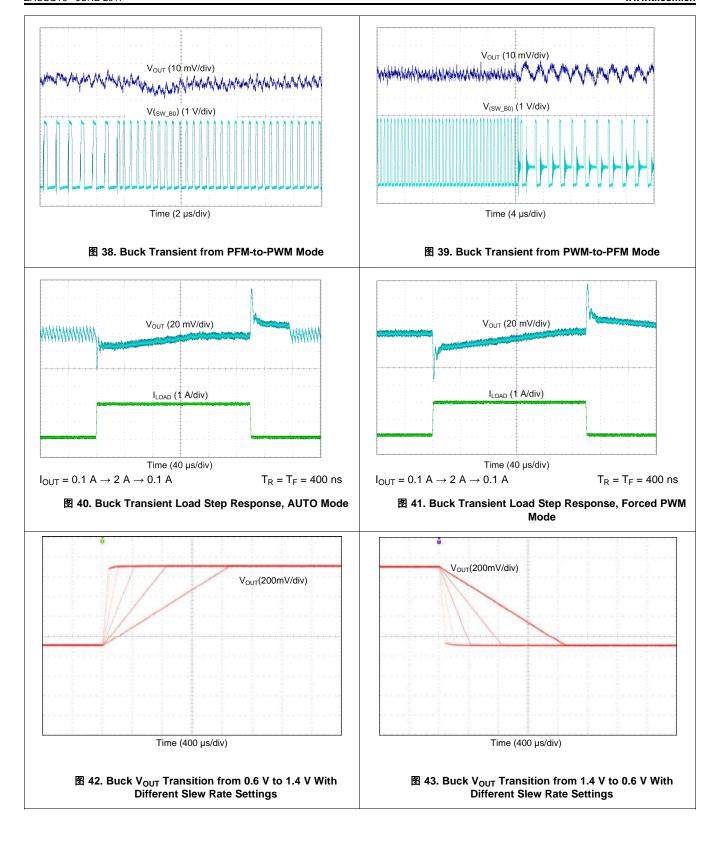
MANUFACTURER	PART NUMBER	VALUE	CASE SIZE	DIMENSIONS L × W × H (mm)	VOLTAGE RATING
Murata	GCM155R71C104KA55	100 nF (10%)	0402	1 × 0.5 × 0.5	16 V
Murata	GCM188R71C104KA37	100 nF (10%)	0603	$1.6 \times 0.8 \times 0.8$	16 V


8.2.2 Detailed Design Procedure

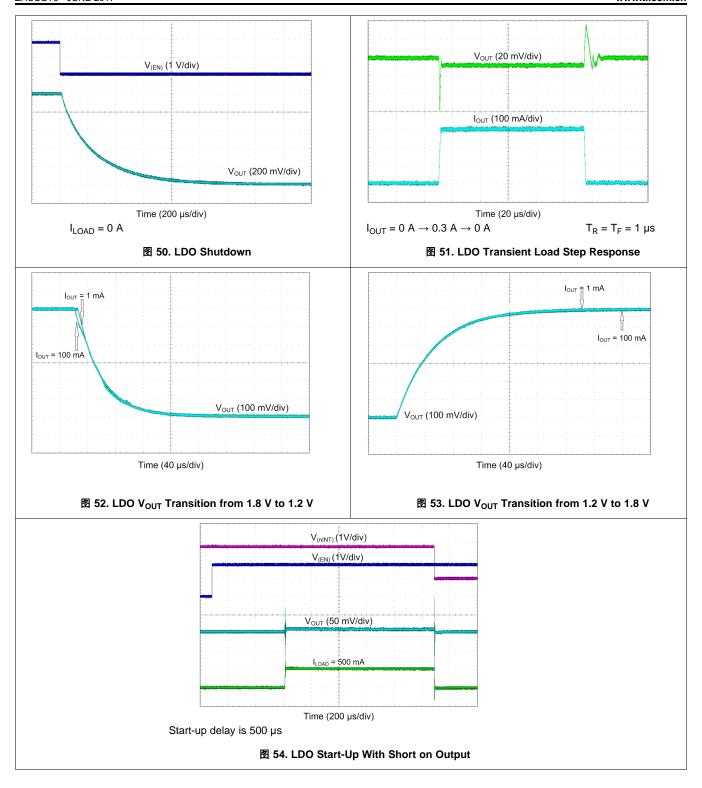
The performance of the LP87332B-Q1 device depends greatly on the care taken in designing the printed circuit board (PCB). The use of low-inductance and low serial-resistance ceramic capacitors is strongly recommended, while proper grounding is crucial. Attention must be given to decoupling the power supplies. Decoupling capacitors must be connected close to the device and between the power and ground pins to support high peak currents being drawn from system power rail during turnon of the switching MOSFETs. Keep input and output traces as short as possible, because trace inductance, resistance, and capacitance can easily become the performance limiting items. The separate buck regulator power pins VIN Bx are not connected together internally. Connect the VIN_Bx power connections together outside the package using power plane construction.


TEXAS INSTRUMENTS

8.2.3 Application Curves


Unless otherwise specified: $V_{(VIN_Bx)} = V_{(VIN_LDOx)} = V_{(VANA)} = 3.7 \text{ V}, V_{OUT_Bx} = 1 \text{ V}, V_{OUT_LDOx} = 1 \text{ V}, T_A = 25^{\circ}\text{C}, L = 0.47 \ \mu\text{H} \ (TOKO DFE252012PD-R47M), } C_{OUT_BUCK} = 22 \ \mu\text{F}, and } C_{POL_BUCK} = 22 \ \mu\text{F}, C_{OUT_LDO} = 1 \ \mu\text{F}. } C_{OUT_L$

ZHCSGT6 – JUNE 2017 www.ti.com.cn



www.ti.com.cn

1.02 V_(EN) (1 V/div) 1.015 V_(nINT) (1 V/div) 1.01 Output Voltage (V) 1.005 V_{OUT} (50 mV/div) 0.995 I_{OUT} (1 A/div) 0.99 0.985 Vin=3.3V Vin=5V 0.98 50 0 150 250 100 200 300 Time (200 µs/div) Output Current (mA) $V_{OUT} = 1 V$ 图 44. Buck Start-up With Short on Output 图 45. LDO Output Voltage vs Load Current 1.02 1.02 1.015 1.015 1.01 1.01 Output Voltage (V) Output Voltage (V) 1.005 1.005 0.995 0.995 0.99 0.99 0.985 0.985 0.98 0.98 5 -40 -20 0 40 60 4.5 5.5 20 80 100 120 140 Input Voltage (V) Temperature (°C) D051 D052 Load = 200 mA $V_{OUT} = 1 V$ $V_{OUT} = 1 V$ Load = 200 mA图 46. LDO Output Voltage vs Input Voltage 图 47. LDO Output Voltage vs Temperature V_(EN) (1 V/div) V_(EN) (1 V/div) I_{OUT} (100 mA/div) V_{OUT} (200 mV/div) V_{OUT} (200 mV/div) Time (40 µs/div) Time (40 µs/div) $I_{LOAD} = 0 A$ $R_{LOAD} = 3.3 \Omega$ 图 48. LDO Start-Up 图 49. LDO Start-Up

ZHCSGT6 – JUNE 2017 www.ti.com.cn

www.ti.com.cn

9 Power Supply Recommendations

The device is designed to operate from an input voltage supply range between 2.8 V and 5.5 V. The VANA input and VIN_Bx buck inputs must be connected together and they must use the same input supply. This input supply must be well regulated and able to withstand maximum input current and maintain stable voltage without voltage drop even at load transition condition. The resistance of the input supply rail must be low enough that the input current transient does not cause too high a drop in the LP87332B-Q1 supply voltage that can cause false UVLO fault triggering. If the input supply is located more than a few inches from the LP87332B-Q1 additional bulk capacitance may be required in addition to the ceramic bypass capacitors. The VIN_LDOx LDO input supply voltage range is 2.5 V to 5.5 V and can be higher or lower than VANA supply voltage.

10 Layout

10.1 Layout Guidelines

The high frequency and large switching currents of the LP87332B-Q1 make the choice of layout important. Good power supply results only occur when care is given to proper design and layout. Layout affects noise pickup and generation and can cause a good design to perform with less-than-expected results. With a range of output currents from milliamps to several amps, good power supply layout is much more difficult than most general PCB design. Use the following steps as a reference to ensure the device is stable and maintains proper voltage and current regulation across its intended operating voltage and current range.

- 1. Place C_{IN} as close as possible to the VIN_Bx pin and the PGND_Bx pin. Route the V_{IN} trace wide and thick to avoid IR drops. The trace between the positive node of the input capacitor and the VIN_Bx pin(s) of LP87332B-Q1, as well as the trace between the negative node of the input capacitor and power PGND_Bx pin(s), must be kept as short as possible. The input capacitance provides a low-impedance voltage source for the switching converter. The inductance of the connection is the most important parameter of a local decoupling capacitor parasitic inductance on these traces must be kept as small as possible for proper device operation. The parasitic inductance can be reduced by using a ground plane as close as possible to top layer by using thin dielectric layer between top layer and ground plane.
- 2. The output filter, consisting of L and COUT, converts the switching signal at SW_Bx to the noiseless output voltage. It must be placed as close as possible to the device keeping the switch node small, for best EMI behavior. Route the traces between the output capacitors of the LP87332B-Q1 and the input capacitors of the load direct and wide to avoid losses due to the IR drop.
- 3. Input for analog blocks (VANA and AGND) must be isolated from noisy signals. Connect VANA directly to a quiet system voltage node and AGND to a quiet ground point where no IR drop occurs. Place the decoupling capacitor as close as possible to the VANA pin.

TEXAS INSTRUMENTS

Layout Guidelines (接下页)

- 4. If remote voltage sensing can be used for the load, connect the LP87332B-Q1 feedback pins FB_Bx to the respective sense pins on the load capacitor. The sense lines are susceptible to noise. They must be kept away from noisy signals such as PGND_Bx, VIN_Bx, and SW_Bx, as well as high bandwidth signals such as the I²C. Avoid both capacitive and inductive coupling by keeping the sense lines short and direct, and close to each other. Run the lines in a quiet layer. Isolate them from noisy signals by a voltage or ground plane if possible. If series resistors are used for load current measurement, place them after connection of the voltage feedback.
- 5. PGND_Bx, VIN_Bx and SW_Bx must be routed on thick layers. They must not surround inner signal layers which are not able to withstand interference from noisy PGND_Bx, VIN_Bx and SW_Bx.
- 6. LDO performance (PSRR, noise and transient response) depend on the layout of the PCB. Best performance is achieved by placing CIN and COUT as close to the LP87332B-Q1 device as practical. The ground connections for CIN and COUT must be back to the LP87332B-Q1 AGND with as wide and as short of a copper trace as is practical and with multiple vias if routing is done on other layer. Avoid connections using long trace lengths, narrow trace widths, or connection through small via. These add parasitic inductances and resistance that results in inferior performance especially during transient conditions.

Due to the small package of this converter and the overall small solution size, the thermal performance of the PCB layout is important. Many system-dependent issues such as thermal coupling, airflow, added heat sinks and convection surfaces, and the presence of other heat-generating components affect the power dissipation limits of a given component. Proper PCB layout, focusing on thermal performance, results in lower die temperatures. Wide power traces come with the ability to sink dissipated heat. This can be improved further on multi-layer PCB designs with vias to different planes. This results in reduced junction-to-ambient ($R_{\theta JA}$) and junction-to-board ($R_{\theta JB}$) thermal resistances, thereby reducing the device junction temperature, T_J . TI strongly recommends performance of a careful system-level 2D or full 3D dynamic thermal analysis at the beginning product design process by using a thermal modeling analysis software.

www.ti.com.cn

10.2 Layout Example

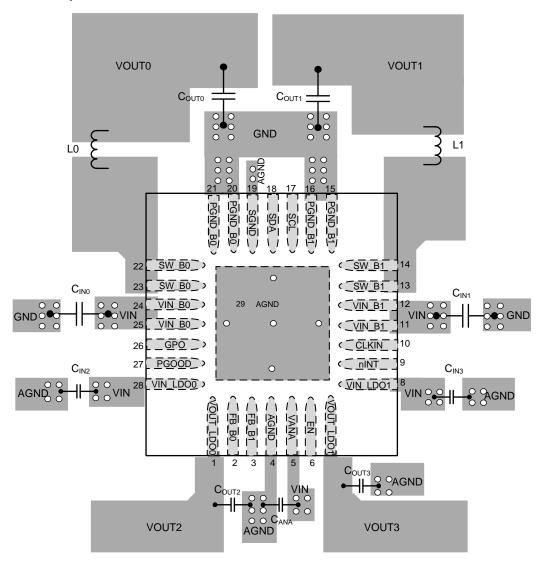


图 55. LP87332B-Q1 Board Layout

11 器件和文档支持

11.1 器件支持

11.1.1 Third-Party Products Disclaimer

TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

11.2 接收文档更新通知

要接收文档更新通知,请导航至 Tl.com 上的器件产品文件夹。单击右上角的*通知我* 进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

11.3 社区资源

下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商"按照原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的 《使用条款》。

TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在 e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。

设计支持 71 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。

11.4 商标

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

11.5 静电放电警告

这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损伤。

11.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 机械、封装和可订购信息

以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更, 恕不另行通知和修订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。

PACKAGE OPTION ADDENDUM

10-Dec-2020

PACKAGING INFORMATION

www.ti.com

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LP87332BRHDRQ1	ACTIVE	VQFN	RHD	28	3000	RoHS & Green	SN	Level-2-260C-1 YEAR	-40 to 125	LP8733 2BRHDQ1	Samples
LP87332BRHDTQ1	ACTIVE	VQFN	RHD	28	250	RoHS & Green	SN	Level-2-260C-1 YEAR	-40 to 125	LP8733 2BRHDQ1	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

10-Dec-2020

PACKAGE MATERIALS INFORMATION

www.ti.com 5-Jan-2021

TAPE AND REEL INFORMATION

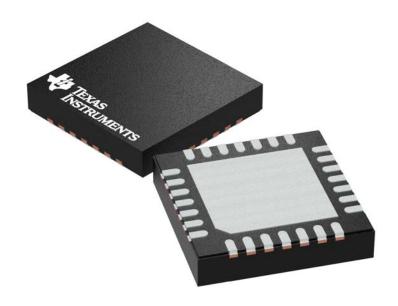
	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LP87332BRHDRQ1	VQFN	RHD	28	3000	330.0	12.4	5.25	5.25	1.1	8.0	12.0	Q2
LP87332BRHDTQ1	VQFN	RHD	28	250	180.0	12.4	5.25	5.25	1.1	8.0	12.0	Q2

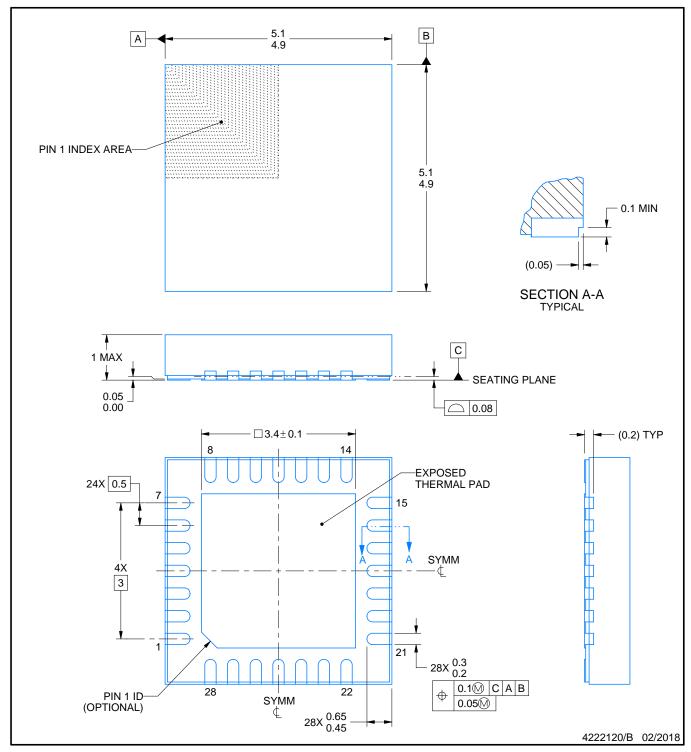
www.ti.com 5-Jan-2021



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LP87332BRHDRQ1	VQFN	RHD	28	3000	367.0	367.0	38.0
LP87332BRHDTQ1	VQFN	RHD	28	250	213.0	191.0	35.0

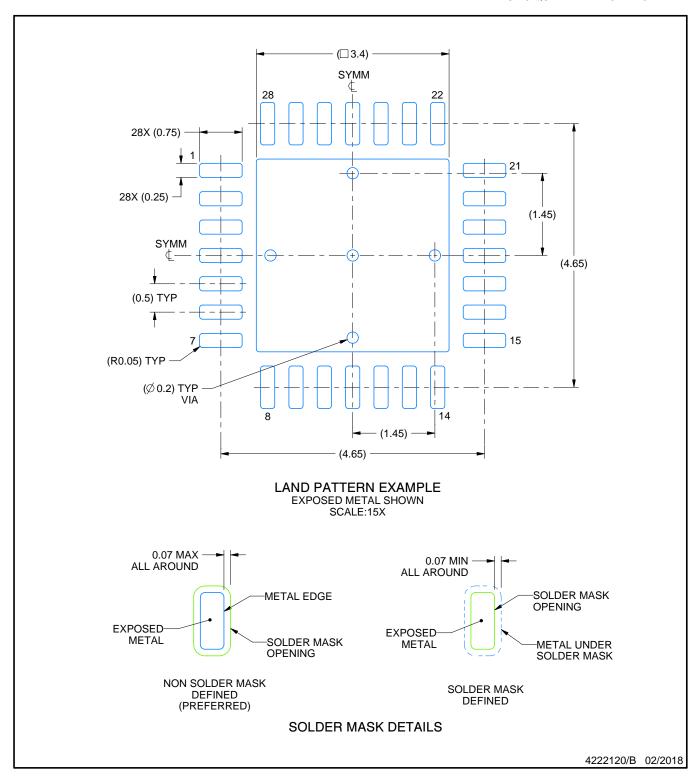
5 x 5 mm, 0.5 mm pitch


PLASTIC QUAD FLATPACK - NO LEAD

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

PLASTIC QUAD FLATPACK - NO LEAD

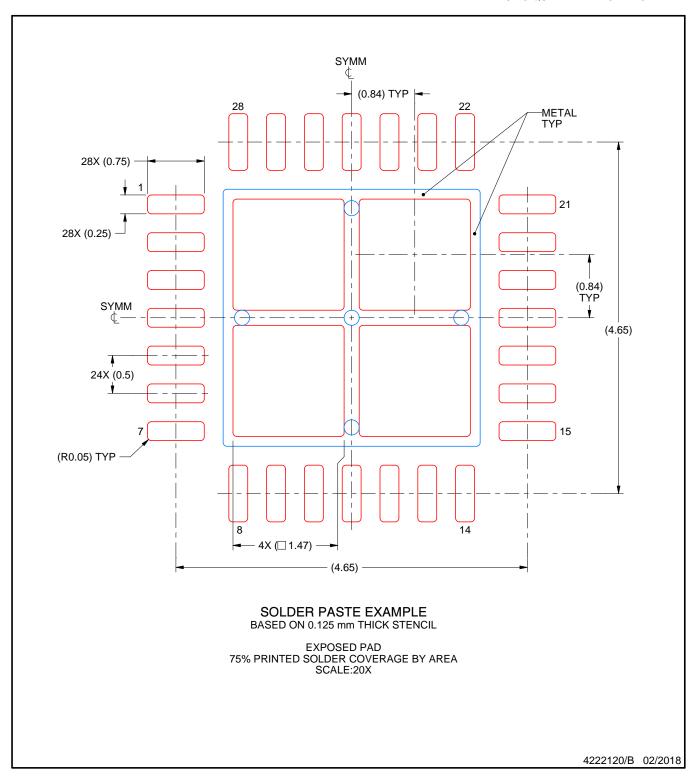
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要声明和免责声明

TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款 (https://www.ti.com.cn/zh-cn/legal/termsofsale.html) 或 ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122 Copyright © 2021 德州仪器半导体技术(上海)有限公司