

0.01MHz 至 4GHz 低功率有源混频器

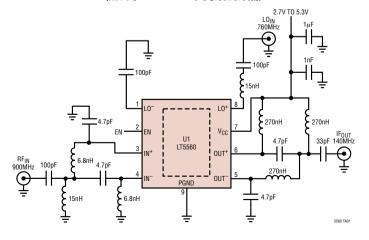
特点

- 上变频或下变频应用
- 噪声指数:典型值为 9.3dB (在 900MHz 输出频率)
- 转换增益:典型值为 2.4dB
- IIP3: 典型值为 9dBm (在 I_{CC} = 10mA)
- 可调电源电流:4mA 至 13.4mA
- 低 LO 驱动电平:-2dBm
- 单端或差分 LO
- 端口至端口的高隔离度
- 具有低断态漏电流的使能控制
- 2.7V 至 5V 单电源
- 小型 3mm×3mm DFN 封装

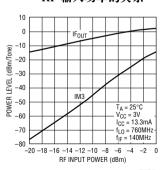
应用

- 便携式无线设备
- CATV/DBS 接收机
- WiMAX 无线电通信装置
- PHS 基站
- RF 仪表
- 微波数据链路
- VHF/UHF 双向无线电通信装置

描述


LT®5560 是一款低功率、高性能宽带有源混频器。该双平衡混频器可采用一个单端 LO 电源来驱动,而且只需要-2dBm 的 LO 功率。这种平衡设计使 LO 到输出泄漏低,而且集成输入放大器具有卓越的 LO 至 IN 隔离度。信号端口可在很宽的频率范围实现阻抗匹配,从而使 LT5560 能够在众多应用中被用作一个上变频或下变频混频器。

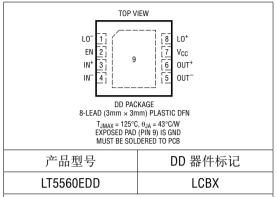
LT5560 具有 10mA 的电源电流特性;然而,DC 电流则是可调的,这使得能够利用单个电阻器来针对每种应用进行性能的优化。例如:当偏置施加13.4mA 的最大电源电流上时,对于一个 900MHz 输出,典型的上变频混频器 IIP3 为 +10.8dBm。


▲▼、LT、LTC 和 LTM 是凌特公司的注册商标。 所有其他商标均为其各自拥有者的产权。

典型应用

低成本 900MHz 下变频混频器

IF_{OUT} 和 IM3 电平与 RF 输入功率的关系


55601

绝对最大额定值 (注1)

电源电压	5.5V
使能电压	0.3V 至 V _{CC} + 0.3V
LO 输入功率 (差分)	
输入信号功率 (差分)	+10dBm
IN+, IN-DC 电流	10mA
OUT+,OUT-DC 电流	10mA
T _{JMAX}	125°C
工作温度范围	40°C至85°C
贮存温度范围	65°C至125°C

封装/订购信息

订购选项 卷带:加#TR

无铅型:加 #PBF 无铅型卷带:加 #TRPBF 无铅型器件标记:http://www.linear.com/leadfree/

对于规定工作温度范围更宽的器件,请咨询凌特公司。

DC 电特性 V_{CC} = 3V,EN = 3V, T_A = 25 $^{\circ}$ C,除非特别注明。测试电路示于图1。(注 3)

参数	条件	最小值	典型值	最大值	单位
电源要求 (V _{CC})	·				
电源电压		2.7	3	5.3	V
电源电流	$V_{CC} = 3V$, $R1 = 3\Omega$		10	12	mA
停机电流	EN = 0.3V , V _{CC} = 3V		0.1	10	μА
使能 (EN) 引脚为低电平 = 关断,高	高电平=接通			•	
EN 输入高电压 (接通)		2			V
EN 输入低电压(关断)				0.3	V
EN 引脚输入电流	EN = 3V EN = 0.3V		25 0.1		μA μA
接通时间			2		μS
关断时间			5		μS

AC电特性 (注2和3)

参数	条件	最小值 典型值 最大值	单位
信号输入频率范围(注 4)	需要外部匹配	< 4000	MHz
	需要外部匹配	< 4000	MHz
信号输出频率范围(注4)	需要外部匹配	< 4000	MHz

T LINEAR

A C 电 特性 $V_{CC} = 3V$,EN = 3V, $T_A = 25\%$ \circ $P_{IN} = -20 dBm$ (对于双音 IIP3 测试为 -20 dBm/音调, $\Delta f = 1 MHz$), $P_{LO} = -2 dBm$,除非特别注明。测试电路示于图 1、2 和 3。(注 2 和 3)

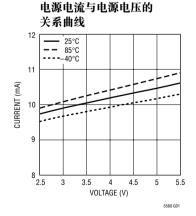
参数	条件	最小值 典型值 最大值 单
信号输入回程损耗	$Z_0 = 50\Omega$,外部匹配	15 c
LO 输入回程损耗	Z ₀ = 50Ω,外部匹配	15 0
信号输出回程损耗	$Z_0 = 50\Omega$,外部匹配	15 0
LO 输入功率		−6 至 1 dB

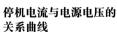
上变频混频器配置:V_{CC}=3V,EN=3V,T_A=25℃,P_{IN}=-20dBm(对于双音 IIP3 测试为-20dBm/音调,Δf=1MHz),P_{LO}=-2dBm,除非特别注明。高压侧 LO 用于 450MHz 测试,低压侧 LO 用于 900MHz 和 1900MHz 测试。测试电路示于图 1 和 3。(注 2 、3 和 5)

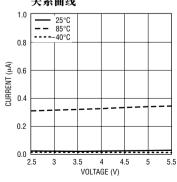
参数	条件	最小值 典型值 最大值	单位
转换增益	f _{IN} = 70MHz , f _{OUT} = 450MHz	2.7	dB
	f _{IN} = 140MHz , f _{OUT} = 900MHz	2.4	dB
	$f_{IN} = 140MHz$, $f_{OUT} = 1900MHz$	1.2	dB
转换增益与温度的关系	$T_A = -40$ °C $\cong 85$ °C \cdot $f_{OUT} = 900$ MHz	-0.015	dB/°C
输入三阶截取	f _{IN} = 70MHz , f _{OUT} = 450MHz	9.6	dBm
	$f_{IN} = 140MHz$, $f_{OUT} = 900MHz$	9.0	dBm
	$f_{IN} = 140MHz$, $f_{OUT} = 1900MHz$	8.0	dBm
输入二阶截取	f _{IN} = 70MHz , f _{OUT} = 450MHz	46	dBm
	f _{IN} = 140MHz , f _{OUT} = 900MHz	47	dBm
	$f_{IN} = 140MHz$, $f_{OUT} = 1900MHz$	30	dBm
单边带噪声指数	$f_{IN} = 70MHz$, $f_{OUT} = 450MHz$	8.8	dB
	f _{IN} = 140MHz , f _{OUT} = 900MHz	9.3	dB
	f _{IN} = 140MHz , f _{OUT} = 1900MHz	10.3	dB
IN 至 LO 隔离度 (施加 LO 时)	f _{IN} = 70MHz , f _{OUT} = 450MHz	69	dB
	$f_{IN} = 140MHz$, $f_{OUT} = 900MHz$	64	dB
	$f_{IN} = 140MHz$, $f_{OUT} = 1900MHz$	64	dB
LO 至 IN 泄漏	f _{IN} = 70MHz , f _{OUT} = 450MHz	-63	dBm
	f _{IN} = 140MHz , f _{OUT} = 900MHz	-54	dBm
	$f_{IN} = 140MHz$, $f_{OUT} = 1900MHz$	-36	dBm
LO 至 OUT 泄漏	f _{IN} = 70MHz , f _{OUT} = 450MHz	-44	dBm
	f _{IN} = 140MHz , f _{OUT} = 900MHz	-41	dBm
	$f_{IN} = 140MHz$, $f_{OUT} = 1900MHz$	-36	dBm
输入 1dB 压缩点	f _{IN} = 70MHz , f _{OUT} = 450MHz	0.4	dBm
	f _{IN} = 140MHz , f _{OUT} = 900MHz	-2.8	dBm
	$f_{IN} = 140MHz$, $f_{OUT} = 1900MHz$	-0.8	dBm

下变频混频器配置: $V_{CC}=3V$,EN=3V, $T_A=25$ [°] \mathbb{C} , $P_{IN}=-20dBm$ (对于双音 IIP3 测试为-20dBm/音调, $\Delta f=1MHz$), $P_{LO}=-2dBm$,除非特別注明。高压侧 LO 用于 450MHz 测试,低压侧 LO 用于 900MHz 和 1900MHz 测试。测试电路示于图 2 和 3。(注 2 、3 和 5)

参数	条件	最小值 典型值 最大值	单位
转换增益	$f_{IN} = 450MHz$, $f_{OUT} = 70MHz$	2.7	dB
	$f_{IN} = 900MHz$, $f_{OUT} = 140MHz$	2.6	dB
	$f_{IN} = 1900MHz$, $f_{OUT} = 140MHz$	2.3	dB
转换增益与温度的关系	$T_A = -40^{\circ}C \cong 85^{\circ}C$, $f_{IN} = 900MHz$	-0.015	dB/°C
输入三阶截取	f _{IN} = 450MHz , f _{OUT} = 70MHz	10.1	dBm
	$f_{IN} = 900MHz \cdot f_{OUT} = 140MHz$	9.7	dBm
	$f_{IN} = 1900MHz$, $f_{OUT} = 140MHz$	5.6	dBm
单边带噪声指数	$f_{IN} = 450MHz$, $f_{OUT} = 70MHz$	10.5	dB
	$f_{IN} = 900MHz$, $f_{OUT} = 140MHz$	10.1	dB
	$f_{IN} = 1900MHz$, $f_{OUT} = 140MHz$	10.8	dB

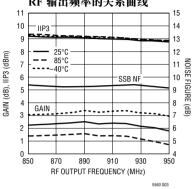



A C **电 特性** 下变频混频器配置: $V_{CC} = 3V$,EN = 3V, $T_A = 25$ $^{\circ}$ $^{\circ}$

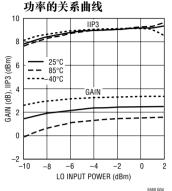

参数	条件	最小值 典型值 最大值	单位
IN 至 LO 隔离度 (施加 LO 时)	f _{IN} = 450MHz , f _{OUT} = 70MHz	52	dB
	f _{IN} = 900MHz , f _{OUT} = 140MHz	52	dB
	$f_{IN} = 1900MHz$, $f_{OUT} = 140MHz$	25	dB
LO 至 IN 泄漏	f _{IN} = 450MHz , f _{OUT} = 70MHz	-52	dBm
	f _{IN} = 900MHz , f _{OUT} = 140MHz	-57	dBm
	$f_{IN} = 1900MHz$, $f_{OUT} = 140MHz$	-37	dBm
LO 至 OUT 泄漏	f _{IN} = 450MHz , f _{OUT} = 70MHz	-47	dBm
	f _{IN} = 900MHz , f _{OUT} = 140MHz	-63	dBm
	$f_{IN} = 1900MHz$, $f_{OUT} = 140MHz$	-24	dBm
2RF - 2LO 输出寄生干扰 (半 IF)	450MHz: f _{IN} = 485MHz , f _{OUT} = 70MHz	-68	dBc
分量 (f _{IN} = f _{LO} + f _{OUT} /2)	900MHz: f _{IN} = 830MHz , f _{OUT} = 140MHz	-69	dBc
	1900MHz: $f_{IN} = 1830MHz$, $f_{OUT} = 140MHz$	-47	dBc
3RF - 3LO 输出寄生干扰 (1/3 IF)	450MHz: f _{IN} = 496.7MHz , f _{OUT} = 69.9MHz	-79	dBc
分量 (f _{IN} = f _{LO} + f _{OUT} /3)	900MHz: f _{IN} = 806.7MHz , f _{OUT} = 140.1MHz	-76	dBc
	1900MHz: f _{IN} = 1806.7MHz , f _{OUT} = 140.1MHz	-62	dBc
输入 1dB 压缩点	f _{IN} = 450MHz , f _{OUT} = 70MHz	-0.8	dBm
	f _{IN} = 900MHz , f _{OUT} = 140MHz	0	dBm
	$f_{IN} = 1900MHz$, $f_{OUT} = 140MHz$	-2.2	dBm

- 注1:高于"绝对最大额定值"部分所列数值的应力有可能对器件 造成永久性的损害。在任何绝对最大额定值条件下暴露的 时间过长都有可能影响器件的可靠性和使用寿命。
- 注2:每组频率条件都需要一个合适的测试电路板。
- 注3:在-40℃至+85℃温度范围内的指标通过设计、特性分析和 统计过程控制中的相关性来保证。
- 注 4: 可在一个更宽的频率范围内运作,但性能将有所下降。请与工厂联系,以获得有关的信息和帮助。
- 注 5: SSB 噪声指数测量是在 RF 输入端 (下行混频器) 或输出端 (上行混频器) 上布设了一个小信号噪声源和带通滤波器且未施加其他 RF 输入信号的情况下进行的。

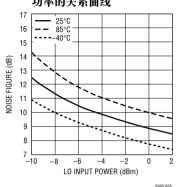
典型DC性能特征 (测试电路示于图1)

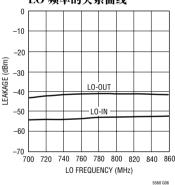


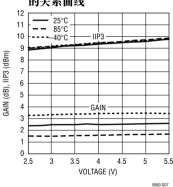
5560f

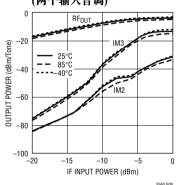


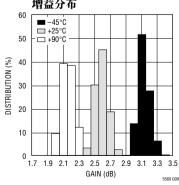
典型AC性能特征 900MHz 上变频混频器应用: V_{CC} = 3V, I_{CC} = 10mA, EN = 3V, T_A = 25℃, f_{IN} = 140MHz, P_{IN} = -20dBm (对于双音 IIP3 测试为 -20dBm/音调, Δf = 1MHz), f_{IO} = 760MHz, P_{IO} = -2dBm, 在 900MHz 频率条件下进行输出测量,除非特别注明(测试电路示于图1)。

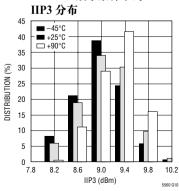

转换增益、IIP3 和 SSB NF 与 RF 输出频率的关系曲线

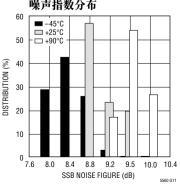

转换增益和 IIP3 与 LO 输入

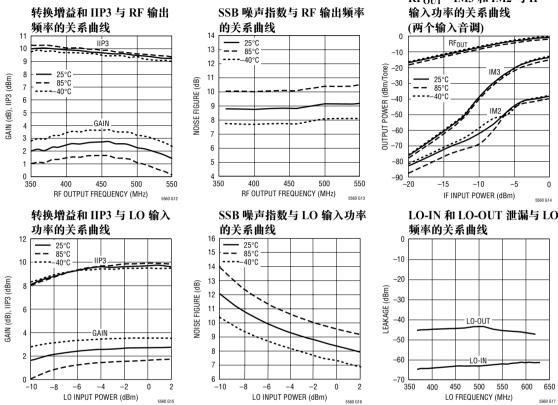

SSB 噪声指数与 LO 输入 功率的关系曲线

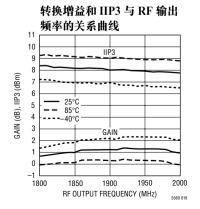

LO-IN 和 LO-OUT 泄漏与 LO 频率的关系曲线

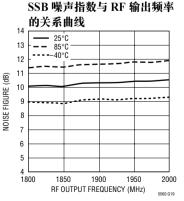

转换增益和 IIP3 与电源电压 的关系曲线

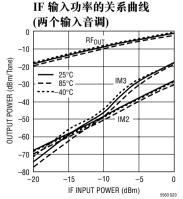

RF_{OUT}、IM3 和 IM2 与 IF 输入功率的关系曲线 (两个输入音调)


900MHz 频率条件下的 増益分布

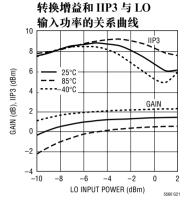

900MHz 频率条件下的

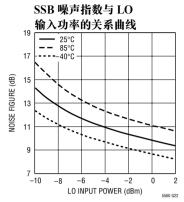

900MHz 频率条件下的 SSB 噪声指数分布

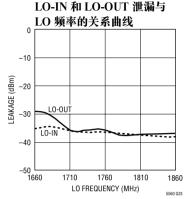



典型AC性能特征 450MHz 上变频混频器应用: $V_{CC}=3V$, $I_{CC}=10mA$,EN=3V, $T_A=25$ $\mathbb C$, $f_{IN}=70$ MHz, $P_{IN}=-20$ dBm (对于双音 IIP3 测试为 -20dBm /音调, $\Delta f=1$ MHz), $f_{LO}=520$ MHz, $P_{LO}=-2$ dBm,在 450MHz 频率条件下进行输出测量,除非特别注明 (测试电路示于图 3)。 RF_{OUT}、IM3 和 IM2 与 IF

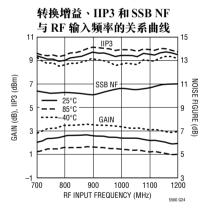
1900MHz 上变频混频器应用: V_{CC} = 3V, I_{CC} = 10mA,EN = 3V, T_A = 25℃, f_{IN} = 140MHz, P_{IN} = -20dBm (对于双音 IIP3 测试为 -20dBm /音调, Δf = 1MHz), f_{LO} = 1760MHz, P_{LO} = -20dBm,在 1900MHz 频率条件下进行输出测量,除非特别注明 (测试电路示于图 1)。 RF_{OUT}、IM3 和 IM2 与

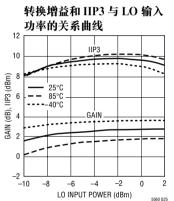


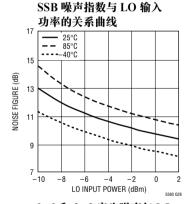


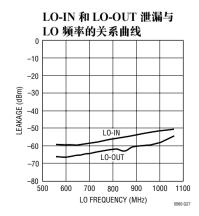


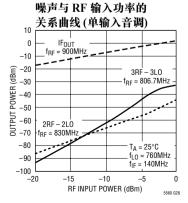
5560

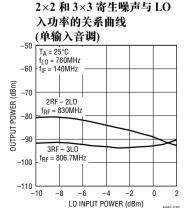

典 型 A C 性能特征 1900MHz 上变频混频器应用: $V_{CC} = 3V$, $I_{CC} = 10mA$,EN = 3V, $T_A = 25$ C, $f_{IN} = 140MHz$, $P_{IN} = -20dBm$ (对于双音 IIP3 测试为 -20dBm/音调, $\Delta f = 1MHz$), $f_{LO} = 1760MHz$, $P_{LO} = -2dBm$,在1900MHz 频率条件下进行输出测量,除非特别注明 (试电路示于图 1)。

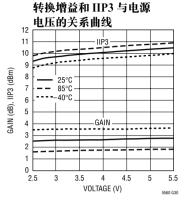


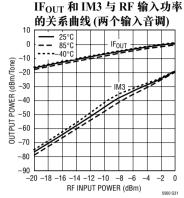


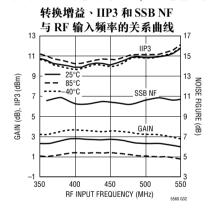


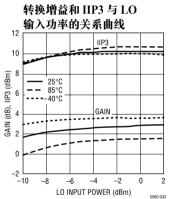

900MHz 下变频混频器应用: V_{CC} = 3V, I_{CC} = 10mA,EN = 3V, T_A = 25℃, f_{IN} = 900MHz, P_{IN} = −20dBm (对于双音 IIP3 测试为 −20dBm/音调, Δf = 1MHz), f_{LO} = 760MHz, P_{LO} = −2dBm,在 140MHz 频率条件下进行输出测量,除非特别注明 (测试电路示于图 2)。

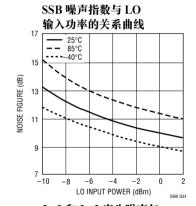



IFOUT、2×2和3×3寄生

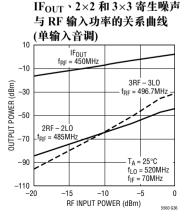


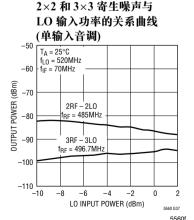

5560

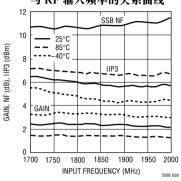

典 型 A C 性 能 特 征 900MHz 下变频混频器应用: $V_{CC} = 3V$, $I_{CC} = 10$ mA, EN = 3V, $T_A = 25$ ℃, $f_{IN} = 900$ MHz, $P_{IN} = -20$ dBm (对于双音 IIP3 测试为 -20dBm/音调, $\Delta f = 1$ MHz), $f_{LO} = 760$ MHz, $P_{LO} = -2$ dBm,在 140MHz 频率条件下进行输出测量,除非特别注明 (测试电路示于图 2)。

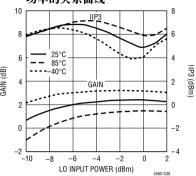




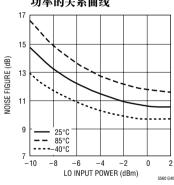

450MHz 下变频混频器应用: V_{CC} = 3V , I_{CC} = 10mA,EN = 3V , T_A = 25 $^{\circ}$ 、 f_{IN} = 450MHz, P_{IN} = −20dBm (对于双音 IIP3 测试为 −20dBm/音调, Δf = 1MHz), f_{LO} = 520MHz, P_{LO} = −2dBm,在 70MHz 频率条件下进行输出测量,除非特别注明 (测试电路示于图 3)。

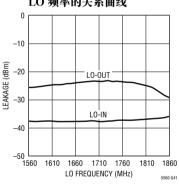


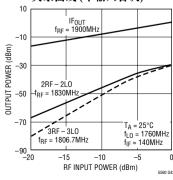


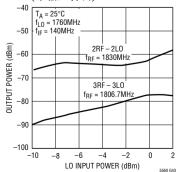


典 型 A C 性 能 特 征 1900MHz 下变频混频器应用: $V_{CC} = 3V$, $I_{CC} = 10$ mA,EN = 3V, $T_A = 25$ C, $f_{IN} = 1900$ MHz, $P_{IN} = -20$ dBm (对于双音 IIP3 测试为 -20dBm/音调, $\Delta f = 1$ MHz), $f_{LO} = 1760$ MHz, $P_{LO} = -2$ dBm,在140MHz 频率条件下进行输出测量,除非特别注明 (测试电路示于图 2)。


转换增益、IIP3 和 SSB NF 与 RF 输入频率的关系曲线


转换增益和 IIP3 与 LO 输入 功率的关系曲线


SSB 噪声指数与 LO 输入 功率的关系曲线


LO-IN 和 LO-OUT 泄漏与 LO 频率的关系曲线

IF_{OUT}、2×2 和 3×3 寄生 噪声与 RF 输入功率的 关系曲线 (单输入音调)

2×2 和 3×3 寄生噪声与 LO 输入功率的关系曲线 (单输入音调)

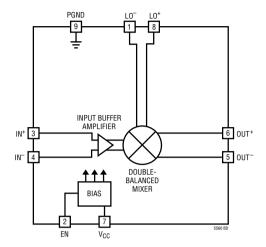
5560f

引脚功能

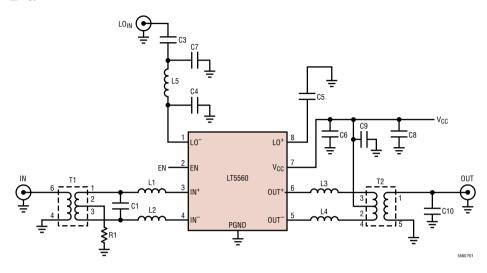
 LO^- 、 LO^+ (**引脚1、8**):用于本机振荡器信号的差分输入。LO 输入阻抗约为 180Ω ,因此需要外部阻抗匹配。在内部给 LO 引脚施加大小为 V_{CC} – 1V 左右的偏压;因此,需要 DC 隔离电容器。LT5560 的特性分析和生产测试是采用一个单端 LO 驱动器来进行的,但也可以采用一个差分 LO 驱动器。

EN(引脚2): 使能引脚。给该引脚施加一个高于 2V 的电压将起动 IC。当 V_{EN} 低于 0.3V 时,IC 将被关 断。如果不需要使能功能,则应把该引脚连接至 V_{CC} 。当 EN=3V 时,典型的使能引脚输入电流为 25μ A。一定不得将使能引脚浮置,否则混频器可能 因此而无法可靠地接通。请注意,无论什么时候都 不能允许 EN 引脚电压超过 V_{CC} 达 0.3V 以上。

IN*、IN^{*}(**引脚 3、4**):差分输入。应采用一个差分信号来驱动这些引脚,以实现最佳性能。每个引脚


都需要一条至地的 DC 电流通路。接地电阻将导致混频器电流减小。当电阻为0Ω 时,从每个引脚流出的 DC 电流约为 6mA。为了实现最低的 LO 至输出泄漏,从每个引脚至地的 DC 电阻应该相等。需要进行阻抗变换以使差分输入与期望的源阻抗相匹配。

OUT-、OUT+(引脚5、6): 差分输出。可能需要进行阻抗变换以实现输出匹配。这些引脚需要一个至 V_{CC} 的 DC 电流通路。


 V_{CC} (引脚 7):用于偏置电路的电源引脚。典型电流消耗为1.5mA。应采用一个1nF 片式电容器对该引脚进行外部旁路。

裸露村垫(引脚9): PGND。用于整个IC 的电路接地回线。必须将其焊接至印刷电路板的接地平面。

方框图

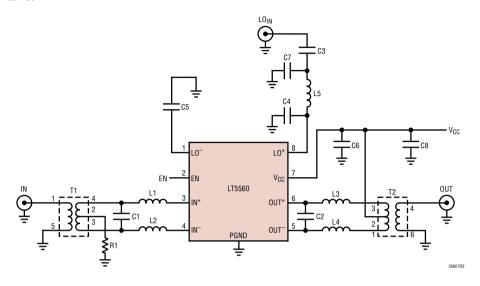
测试电路

针对 f_{OUT} = 900MHz、 f_{IN} = 140MHz 和 f_{LO} = 760MHz 条件的元件值

参考指示符	数值	规格	产品型号	参考指示符	数值	規格	产品型号
C1	22pF	0402	AVX 04025A220JAT	L1 , L2	18nH	1005	Toko LL1005-FH18NJ
C3 · C5	100pF	0402	AVX 04025A101JAT	L3 , L4	27nH	1005	Toko LL1005-FH27NJ
C4	1pF	0402	AVX 04025A1R0BAT	L5	12nH	1005	Toko LL1005-FH12NJ
C6 · C9	1nF	0402	AVX 04023C102JAT	R1	3Ω	0402	
C8	1μF	0603	Taiyo Yuden LMK107BJ105MA	T1	1:1		Coilcraft WBC1-1TL
C10	2.2pF	0402	AVX 04025A2R2BAT	T2	4:1		TDK HHM1515B2

注:未使用 C7。

针对 f_{OUT} = 1900MHz、 f_{IN} = 140MHz 和 f_{LO} = 1760MHz 条件的元件值


参考指示符	数值	規格	产品型号	参考指示符	数值	規格	产品型号
C1	22pF	0402	AVX 04025A220JAT	L1 , L2	18nH	1005	Toko LL1005-FH18NJ
C3	100pF	0402	AVX 04025A101JAT	L3 , L4	3.9nH	1005	Toko LL1005-FH3N9S
C7	1.5pF	0402	AVX 04025A1R5BAT	L5	5.6nH	1005	Toko LL1005-FH5N6S
C6 · C9	1nF	0402	AVX 04023C102JAT	R1	3Ω	0402	
C8	1μF	0603	Taiyo Yuden LMK107BJ105MA	T1	1:1		Coilcraft WBC1-1TL
C10	1pF	0402	AVX 04025A1R0BAT	T2	1:1		TDK HHM1525

注:未使用 C4 和 C5。

图 1:针对 900MHz 和 1900MHz 上变频混频器应用的测试电路示意图 (采用 140MHz 输入频率时)

TECHNOLOGY TECHNOLOGY

测试电路

针对 f_{IN} = 900MHz、 f_{OUT} = 140MHz 和 f_{LO} = 760MHz 条件的元件值

参考指示符	数值	规格	产品型号	参考指示符	数值	規格	产品型号
C1	2.2pF	0402	AVX 04025A2R2BAT	L1 , L2	0Ω	1005	0Ω 电阻器
C2	1.2pF	0402	AVX 04025A1R2BAT	L3 , L4	220nH	1608	Toko LL1608-FSR22J
C3 · C5	100pF	0402	AVX 04025A101JAT	L5	12nH	0402	Toko LL1005-FH12NJ
C4	1pF	0402	AVX 04025A1R0BAT	R1	3Ω	0402	
C6	1nF	0402	AVX 04023C102JAT	T1	1:1		TDK HHM1522B1
C8	1μF	0603	Taiyo Yuden LMK107BJ105MA	T2	4:1		M/A-COM MABAES0061

注:未使用 C7。

针对 f_{IN} = 1900MHz、 f_{OUT} = 140MHz 和 f_{LO} = 1760MHz 条件的元件值

参考指示符	数值	规格	产品型号	参考指示符	数值	規格	产品型号
C1	1.0pF	0402	AVX 04025A1R0BAT	L1 , L2	0Ω	1005	0Ω 电阻器
C2	1.2pF	0402	AVX 04025A1R2BAT	L3 , L4	220nH	1608	Toko LL1608-FSR22J
C3	100pF	0402	AVX 04025A101JAT	L5	5.6nH	1005	Toko LL1005-FH5N6S
C7	1.5pF	0402	AVX 04025A1R5BAT	R1	3Ω	0402	
C6	1nF	0402	AVX 04023C102JAT	T1	2:1		TDK HHM1526
C8	1μF	0603	Taiyo Yuden LMK107BJ105MA	T2	4:1		M/A-COM MABAES0061

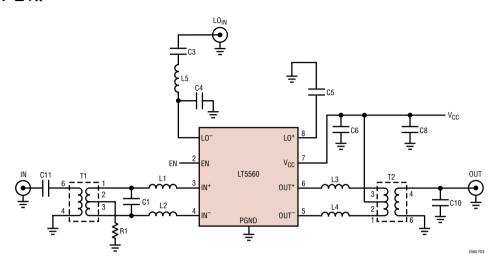

注:未使用 C4 和 C5。

图 2:针对 900MHz 和 1900MHz 下变频混频器应用的测试电路示意图 (采用 140MHz 输入频率时)

5560

测试电路

针对 f_{IN} = 70MHz、 f_{OUT} = 450MHz 和 f_{LO} = 520MHz 条件的元件值

参考指示符	数值	规格	产品型号	参考指示符	数值	規格	产品型号
C1	39pF	0402	AVX 04025390JAT	L1 , L2	33nH	1005	Toko LL1005-FH33NJ
C3 · C5 · C6	1nF	0402	AVX 04023C102JAT	L3 , L4	68nH	1608	Toko LL1608-FS68NJ
C4	1.5pF	0402	AVX 04025A1R5BAT	L5	22nH	1005	Toko LL1005-FH22NJ
C8	1μF	0603	Taiyo Yuden LMK107BJ105MA	R1	3Ω	0402	
C10	1.5pF	0402	AVX 04025A1R5BAT	T1	1:1		Coilcraft WBC1-1TL
				T2	4:1		M/A-COM MABAES0061

注:未使用 C11。

针对 f_{IN} = 450MHz、 f_{OUT} = 70MHz 和 f_{LO} = 520MHz 条件的下变频混频器元件值

参考指示符	数值	规格	产品型号	参考指示符	数值	規格	产品型号
C3 , C5 , C6	1nF	0402	AVX 04023C102JAT	L3 , L4	0Ω	0402	0Ω电阻器
C4	1.5pF	0402	AVX 04025A1R5BAT	L5	22nH	0402	Toko LL1005-FH22NJ
C8	1μF	0603	Taiyo Yuden LMK107BJ105MA	R1	3Ω	0402	
C11	5.6pF	0603	AVX 06035A5R6BAT	T1	1:1		Coilcraft WBC1-1TL
L1 , L2	0Ω	0402	0Ω 电阻器				
				T2	16:1		Coilcraft WBC16-1TL

注:未使用 C1 和 C10。

图 3:针对 450MHz 上变频混频器和下变频混频器应用的测试电路示意图

TECHNOLOGY TECHNOLOGY

LT5560包括一个双平衡混频器、一个共基极输入缓冲器放大器和偏置/使能电路。该IC是专为高达4GHz的频率转换应用而设计的,它也可在更宽的频率范围内工作,只是性能会有所下降。为了获得最佳性能,输入和输出应采取差分连接。可由一个单端电源来驱动 LO 输入(利用低压侧或高压侧 LO 操作)。采用单端 LO 驱动来对 LT5560 进行特性分析和生产测试。

利用一个外部电阻器,可实现从小于 4mA 至约13.5mA 的 LT5560 静态 DC 电流调节范围。该功能使得用户能够根据具体应用来在 IIP3 性能和 DC 电流之间进行权衡取舍。

表 1 列出了 3 种针对不同目标应用的演示电路 板。表中所列的输入和输出频率范围基于测得的 12dB 回程损耗带宽,而 LO 端口频率范围则基于 10dB 的回程损耗带宽。图 1、2 和 3 分别示出了针对 DC963B、DC991A 和 DC1027A 的通用电路拓扑结构。电路板布局示于图 23、24 和 25。低频演示电路板 DC1027A 可针对上变频应用进行再配置。

表1:LT5560 演示电路板描述

混频器描述	演示 电路板 编号	输入频率 (MHz)	输出频率 (MHz)	LO 频率 (MHz)
上变频, 蜂窝频段	DC963B	50-190	850-940	530-930
下变频, 蜂窝频段	DC991A	710-1300	110-170	530-930
下变频, VHF 频段	DC1027A	115-295	3-60	180-310

注:有关用于 UMTS、WLAN 和其他频段的演示电路板的信息请咨询工厂。

信号输入端口

图 4 示出了差分输入端口电路的简化示意图和 外部阻抗匹配电路的拓扑结构实例。引脚 3 和 4 均 可供应高达 6mA 的 DC 电流。可通过增设电阻器 R1 来减小该电流 (可调混频器电流将在后面的章节中讨 论)。DC 接地通路可通过一个输入变压器的中心抽 头来提供(如图 4 所示),或者通过连接在引脚 3 和 4 与地之间的匹配电感器或扼流圈来提供。

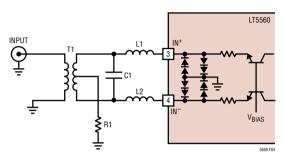


图 4:采用低通外部匹配拓扑结构的输入端口

图 4 所示的低通阻抗匹配拓扑结构可被用来对引脚 3 和 4 上的差分输入阻抗进行变换,以与信号源的输入阻抗相匹配。表 2 罗列了针对多种频率的 差分输入阻抗。

表 2:输入信号端口差分阻抗

1615 v25	44.000	反射系数	$(Z_0 = 50\Omega)$
频率 (MHz)	输入阻抗 (Ω)	大小	角度 (°)
70	28.5 + j0.8	0.274	177
140	28.5 + j1.6	0.274	174
240	28.6 + j2.7	0.275	171
360	28.6 + j4.0	0.276	167
450	28.6 + j4.9	0.278	163
750	28.8 + j8.2	0.287	153
900	28.8 + j9.8	0.294	148
1500	29.1 + j16.3	0.328	138
1900	29.4 + j20.8	0.357	120
2150	29.6 + j23.6	0.376	114
2450	29.9 + j27.0	0.399	107
3600	31.7 + j42.1	0.499	86.2

下面的实例说明了如何设计一个用于 900MHz 信号输入的低通阻抗变换网络。

简化的输入电路示于图 5。就本例而言,输入变压器具有一个 1:1 的阻抗比,因此 $R_S=50\Omega$ 。由表 2 可知,在 900MHz 频率条件下,差分输入阻抗为: R_L + $jX_{INT}=28.8+j9.8\Omega$ 。内部电阻将被用作阻抗匹配网络的一部分。匹配网络由附加的外部串联电感 (L1 和 L2) 和一个与 50Ω 源阻抗并联的电容 (C1) 所组成。外部电容和电感的计算方法如下。

首先,计算阻抗变换比(n)和网络Q:

$$n = \frac{R_S}{R_I} = \frac{50}{28.8} = 1.74$$

$$Q = \sqrt{(n-1)} = 0.858$$

接著,可采用下面的公式来计算电容和电感:

$$X_C = \frac{R_S}{\Omega} = 58.3\Omega$$

$$C1 = \frac{1}{\omega \cdot X_C} = 3.03 pF$$

$$X_L = R_L \cdot Q = 24.7\Omega$$

$$X_{EXT} = X_L - X_{INT} = 14.9\Omega$$

$$L1 = L2 = \frac{L_{EXT}}{2} = \frac{X_{EXT}}{2\omega} = 1.32 \text{ nH}$$

通过把内部电抗 (X_{INT}) 从总电抗 (X_L) 中减去而对内部电感进行了补偿。采用高阻抗印刷传输线来取代集总电感器可实现小电感值。虽然上面的公式提供了上佳的起始值,但可能需要进行优化以对布局和元件寄生效应加以补偿。

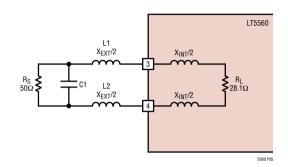


图 5: 用于输入端口的小信号电路

表 3 列出了在 LT5560 评估电路板上使用的、用于在各种频率条件下实现阻抗匹配的实际元件值。图 6 示出了其中一些场合的输入回程损耗与频率的关系性能的测量结果。

表 3: 用于输入匹配的元件值

场合	频率 (MHz)	T1	C1 (pF)	L1 · L2 (nH)	匹配带宽 (在 12dB 回程 损耗条件下)
1	10	WBC1-1TL 1:1	220	180	6-18
2	70	WBC1-1TL 1:1	39	33	29-102
3	140	WBC1-1TL 1:1	22	18	50-190
4	240	WBC1-1TL 1:1	15	12	115-295
5	450 ¹	WBC1-1TL 1:1	NA	0	390-560
6	900	HHM1522B11:1	2.2	0	710-1630
7	1900	HHM1526 2:1	1	0	1660-2500
8	2450	HHM1520A2 2:1	1	0	1640-2580
9	3600	HHM1583B1 2:1	0.5	0	3330-3840

注1:串联 5.6pF 电容器在输入端上采用(见图 3)。

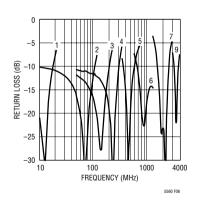


图 6:不同匹配值条件下输入回程损耗与频率的关系曲线

LO 输入端口

图 7 给出了 LO 输入电路的简化示意图。LO 输入线路负责驱动混频器晶体管的基极,而一个跨接在输入端上的 200 Ω 电阻器则用于提供阻抗终端负载。内部1k Ω 偏置电阻器与输入电阻器相并联,从而形成了一个约180 Ω 的净输入 DC 电阻。由一个在内部生成的电压给该引脚施加了一个大小约为 V_{CC} —1V 的偏压;因此,需要外部 DC 隔离电容器。如果需要的话,可对 LO 输入进行差分驱动。IC 上所需的 LO 驱动电压为 240m V_{RMS} (典型值),该电压可取自一个 50 Ω 电源或一个阻抗更高的电源 (例如PECL)。

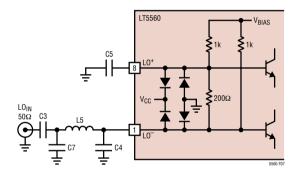


图 7:LO 输入电路示意图

建议在 LO 电源和 LO 输入之间实现电抗性匹配,以利用合成电压增益。为了帮助实现匹配,表4 列出了 LO 输入端口的单端输入阻抗。针对多种 LO 频率的实际元件值列于表 5。图 8 示出了每种场合的典型回程损耗响应。

表 4: 单端 LO 输入阻抗 (并联等效)

频率	输入阻抗	反射系数 (Z ₀ = 50Ω)		
(MHz)	(Ω)	大小	角度 (°)	
150	161 - j679	0.529	-9.3	
520	142 - j275	0.494	-23.3	
760	130 - j 192	0.475	-33.5	
1660	74 - j 98	0.347	-74.5	
1760	69 - j 94	0.330	-80.1	
2040	60 - j 89	0.308	-90.1	
2210	51 − j91	0.266	-104	
3150	50 - j 103	0.235	-104	
3340	33 - j41	0.472	-138	

表 5: 用于 LO 输入匹配的元件值

场合	频率 (MHz)	C4 (pF)	L5 (nH)	C7 (pF)	C3 · C5 (pF)	匹配带宽 (在 12dB 回程 损耗条件下)
1	150	8.2	68	-	1000	120-180
2	250	4.7	47	-	1000	195-300
3	520	1.5	22	-	1000	390-605
4	760	1	12	-	100	590-890
5	1200	-	6.8	-	100	850-1430
6	1760	-	4.7	1	100 ¹	1540-1890
7	2900	-	1	1	10	2690-3120
8	3150	-	0	-	10	2990-3480

注1:在1760MHz 频率条件下未使用 C5。

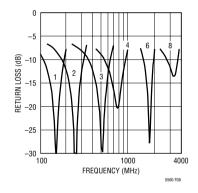


图 8:不同匹配值条件下典型 LO 输入回程损耗与频率的关系曲线

信号输出端口

图 9 给出了输出电路的简化示意图。输出引脚 OUT * 和 OUT * 在内部与混频器晶体管的集电极相 连。必须给这些引脚施加大小为电源电压的偏压,该偏压可通过一个变压器中心抽头、阻抗匹配电感器、RF 扼流圈或上拉电阻器来施加。当采用外部电阻器 R1 = 3Ω 时(图1 至 3),每个 OUT 引脚将吸收约 4.5mA 的电源电流。为了获得最佳性能,必须通过一个变压器或平衡-不平衡转换器从外部对这些差分输出进行合并。

图 10 示出了该输出的一个等效小信号模型。输出阻抗可以被模拟为一个1.2kΩ 电阻器与一个0.7pF电容器的并联。对于低频应用,可以省去0.7nH 串联键合线电感。

外部元件 C2、L3 和 L4 形成了一个低通阻抗匹配网络,用于使混频器输出阻抗与变压器 T2 的输入阻抗相匹配。这些元件的数值可采用表 6 所列的阻

抗参数以及与用于输入匹配网络的相似公式来估算。例如:当输出频率为140 MHz、 $R_L = 200 \Omega$ (T2 采用一个4:1 变压器)时,

$$n = \frac{R_S}{R_I} = \frac{1082}{200} = 5.41$$

$$Q = \sqrt{(n-1)} = 2.10$$

$$X_C = \frac{R_S}{\Omega} = 515\Omega$$

$$C = \frac{1}{\omega \bullet X_C} = 2.21 pF$$

$$C2 = C - C_{INIT} = 1.51pF$$

$$X_1 = R_1 \cdot Q = 420\Omega$$

$$L3 = L4 = \frac{X_L}{2\omega} = 239nH$$

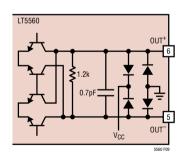


图 9:输出端口电路示意图

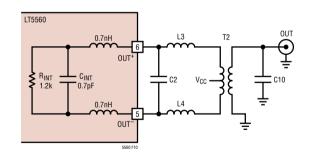


图 10:采用外部匹配的输出端口小信号模型

表 6:输出端口差分阻抗(并联等效)

频率	输出阻抗	反射系数	$(Z_0 = 50\Omega)$
(MHz)	(Ω)	大小	角度 (°)
70	1098 - j3185	0.913	-1.8
140	1082 − j 1600	0.912	-3.6
240	1082 - j974	0.912	-5.9
360	1093 - j646	0.913	-8.9
450	1083 - j522	0.913	-11.0
750	1037 - j320	0.910	-17.8
900	946 - j 269	0.903	-21.1
1500	655 - j 162	0.870	-34.5
1900	592 - j 122	0.865	-44.6
2150	622 - j 108	0.883	-50.0
2450	612 - j 95.7	0.879	-55.4
3600	188 - j53.1	0.756	-88.7

在 C 2 的计算值小于内部输出电容的场合,可采 用电容器 C 10 来改善阻抗匹配。 表 7 罗列了在 LT5560 评估电路板上使用的、用于在各种频率条件下实现阻抗匹配的实际元件值。图 11 示出了其中一些场合的输入回程损耗与频率的关系性能测量结果。

表 7: 用于输出匹配的元件值

	频率		C2	L3 ,	C10	匹配带宽 (在 12dB 回程损耗
场合	(MHz)	T2	(pF)	(nH)	(pF)	条件下)
1	10	WBC16-1TL 16:1	-	0	-	3-60
2	70	WBC16-1TL 16:1	-	0	_1	3-60
3	140	MABAES0061 4:1	1.5	220	-	110-170
4	240	MABAES0061 4:1	0.5	120	-	175-300
5	380	MABAES0061 4:1	-	68	-	290-490
6	450	MABAES0061 4:1	-	68	1.5	360-540
7	900	HHM1515B2 4:1	-	27	2.2	850-940
8	1900	HHM1525 1:1	-	3.9	1	1820-2000

注1:通过在C10处增设一个180nH并联电感器可实现更加优越的70MHz 匹配性能。

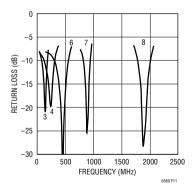


图 11:不同匹配值条件下输出回程 损耗与频率的关系曲线

TECHNOLOGY TECHNOLOGY

使能接口

图 12 示出了 EN 引脚接口的简化示意图。接通 LT5560 所需的电压为 2V。如欲停用芯片,则使能电压必须低于 0.3V。如果允许 EN 引脚浮置,则芯片往往将会保持在其最后的工作状态,因此,建议不要以这种方式来运用使能功能。如果不需要停机功能,则应把 EN 引脚直接连接至 V_{CC} 。

EN 引脚上的电压绝对不能高出电源电压 (V_{CC}) 达 0.3V 以上。如果发生这种情况,则电源电流有可能通过 EN 引脚 ESD 二极管来提供,故而有可能损坏 IC。

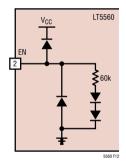


图 12: 使能输入电路

可调电源电流

LT5560 在电源电流和线性度之间提供了一种直接的权衡。这种能力令用户能够根据特定的应用来优化混频器的功耗和性能。可通过改变位于输入平衡-不平衡转换器中心抽头的电阻器 R1 的阻值来调节电源电流。对于下变频应用,可能需要采用一个与 R1 并联的旁路电容器来最大限度地减小噪声指数。在 R1 阻值较大的情况下,旁路电容器对噪声指数的影响更加明显。在上行混频器配置中,在 R1 的两端增设一个电容器几乎没有什么作用。

图13 示出了电源电流与R1 的函数关系。请注意,该电流还会受到匹配元件中的寄生电阻的影响。图14 示出了电源电流对一个900MHz 上变频混频器的增益、IIP3 和 NF 的影响。图15 描绘了一个

900MHz 下变频混频器的性能与电流的关系曲线。在该例中,布设了一个与 R1 并联的 1nF 电容器,旨在实现最佳的噪声指数。

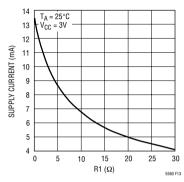


图 13: 典型电源电流与 R1 阻值的关系曲线

图 14:900MHz 上变频混频器的增益、噪声 指数和 IIP3 与电源电流的关系曲线

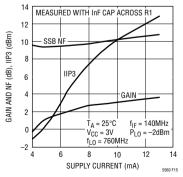


图 15:900MHz 下变频混频器的增益、噪声 指数和 IIP3 与电源电流的关系曲线

5560

应用实例

除了数据表中所确定的之外,LT5560还可在众多应用中被用作一个上变频或下变频混频器。下面的例子显示了LT5560的通用性(针对每种情形的元件值请查阅表3、5和7)。

图 16 示出了当 LT5560 被用作一个 240MHz 上 变频混频器时其增益、IIP3 和 IIP2 性能与 RF 输出 频率的关系曲线。输入频率为 10MHz,并具有一个 250MHz 的 LO 频率。该电路采用了图 1 所示的拓扑 结构。

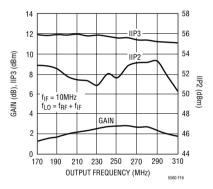


图 16:LT5560 在 240MHz 上变频 混频器应用中的性能

LT5560 在140MHz 下变频混频器应用中的性能曲线绘于图17。在该场合中,显示了增益、IIP3 和NF 与LO 功率的函数关系 (IF 输出频率 = 10MHz)。针对该场合的电路拓扑结构示于图3。

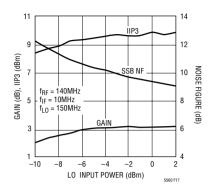


图 17:LT5560 在 140MHz 下变频 混频器应用中的性能

LT5560 在更高频率条件下的工作性能示于图 18,图中给出了一个 3600MHz 下变频混频器性能。该图描绘了转换增益、IIP3 和 DSB NF 与 3000 至 3800MHz 的 RF 输入频率范围和 450MHz 的 IF 频率之间的关系。该电路的拓扑结构与图 2 所示的相同。

图 18:LT5560 用作一个 3600MHz 下变频混频器时的性能

集总元件匹配

迄今为止所描述的应用均采用外部变压器或混合平衡-不平衡转换器来实现单端至差分转换,而且,在某些场合还采用了阻抗变换。一种替代方法是采用集总元件平衡-不平衡转换器来实现输入或输出匹配网络。

图19 示出了一种集总元件平衡-不平衡转换器拓扑结构。期望的元件值可采用下面的公式来估算,式中的 R_A 和 R_B 是分别位于不平衡端口和平衡端口上的终接电阻。可变 f_C 是期望的中心频率。(LT5560)输入和输出的电阻可在表 2 和 6 中查得)。

$$\begin{split} L_0 &= \frac{\sqrt{R_A \bullet R_B}}{2 \bullet \pi \bullet f_C} \\ C_0 &= \frac{1}{2 \bullet \pi \bullet f_C \bullet \sqrt{R_A \bullet R_B}} \end{split}$$

计算值是近似的,因为它们并未对 IC 和外部元件的寄生效应加以补偿。

电感器 L_{DC} 将被用于提供一条至地或 V_{CC} (根据 该电路是用在 LT5560 的输入端还是输出端而定) 的 DC 通路。在某些场合中,希望采用尽可能大的 L_{DC} 值,以最大限度地减小电路上的负载;然而,也可以对该数值进行优化以调整阻抗匹配。并联电感器 L_{O} 负责提供用于另一个平衡端口的 DC 通路。

为了实现 DC 隔离,可能需要采用电容器 C_{DC} ,但是,如果不需要进行 DC 去耦,则常常可以省去这个电容器。

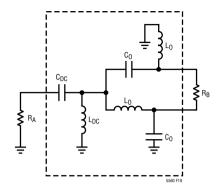


图 19:集总元件平衡-不平衡转换器

在某些应用中, CDC 有益于优化阻抗匹配。

第1页上的电路示出了集总元件平衡-不平衡转换器的使用。在该例中,LT5560被用于运用一个760MHz L_0 信号来把一个900MHz输入信号降频转换至140MHz。

对于 900MHz 输入, R_A = 50 Ω 且 R_B = 28 Ω (由表 2 可知)。 C_O 和 L_O 所采用的实际数值为 4.7pF 和 6.8nH,这与 4.7pF 和 6.6nH 的计算值非常吻合。在该场合中,15nH 的并联电感器被用于优化阻抗匹配,而 100pF 电容器则可提供 DC 去耦。

在140MHz 输出频率条件下, R_A 和 R_B 所采用的数值分别为 50 Ω 和1080 Ω (由表 6 可知),因而产生了 C_O = 4.9pF 和 L_O = 265nH 的计算值。这些数值与4.7pF 和 270nH 的实际值十分吻合。这里,采用了一个270nH 的并联电感器 (L_{DC}),并运用 33pF 的隔离电容器来优化阻抗。

采用集总元件平衡-不平衡转换器的混频器的 "IF_{OUT} 和 IM3 电平与 RF 输入功率的关系"测量结果示于第1页。附加性能参数与 RF 输入频率的关系曲线示于图 20。

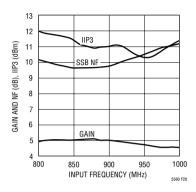


图 20:采用集总元件平衡-不平衡转换器的900MHz下变频混频器的件能

低频应用

在低 IF 频率条件下,变压器由于其尺寸和成本的原因而不便使用,故可采用替代方法来实现期望的差分至单端转换。图 21 和 22 中的实例采用一个

运算放大器来演示输出频率为 450kHz 时的性能。上拉电阻器 R3 和 R4 在集电极开路 IF 输出 (而不是大电感器) 上使用。运算放大器提供了增益,并把混频器差分输出转换至单端。在低频率条件下,利用一个并联电阻器和一个 DC 隔离电容器便可容易地实现 LO 端口的匹配。该 IF 接口电路可被用于频率高达 1MHz 的信号。

图 21 示出了一种输入匹配,它采用变压器来提供至混频器的差分信号。示于图 22 的一种可行的替代方法是在一个输入引脚上采用单端驱动,并将另一个引脚接地。这种方法的成本效益性比采用变压器时更好,然而将牺牲某些性能。另一种可选方法是采用一个集总元件平衡-不平衡转换器,这仅比单端阻抗匹配多用了一个元件,但将提供更加优越的性能。下面实例的测量数据汇总干表8。

表 8: 低频性能

f _{IN} (MHz)	f _{OUT} (MHz)	G _C (dB)	IIP3 (dBm)	DSB NF (dB)	I _{CC} (mA)
200	0.45	9	3.8	11.6	14
90	0.45	6.8	3.3	22	18

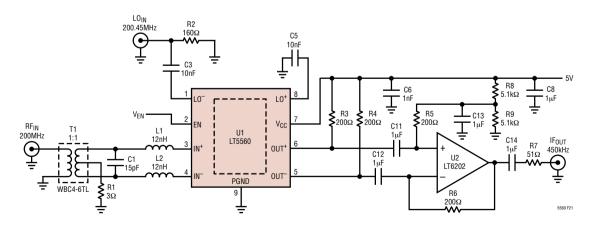


图 21: 一个具备有源 IF 接口的 200MHz 至 450kHz 下变频器

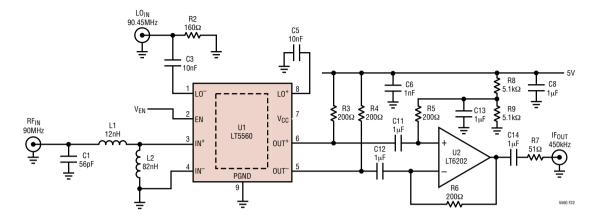


图 22: 具有一个低成本分立平衡-不平衡转换器输入和一个 450kHz 有源 IF 接口的 90MHz 下变频器

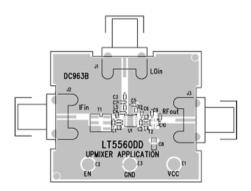


图 23: 上变频混频器评估电路板 (DC963B) - 见表 1

典型应用

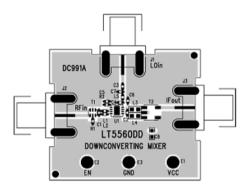
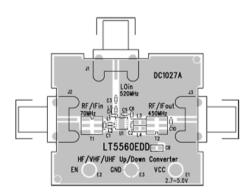
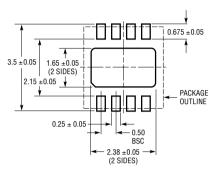
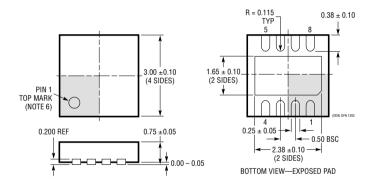


图 24: 下变频混频器评估电路板 (DC991A) - 见表 1


图 25: HF/VHF/UHF 上变频或下变频混频器评估电路板 (DC1027A) 一见表 1

封装描述

DD8 封装 8 引脚塑料 DFN (3mm×3mm) (参考 LTC DWG # 05-08-1698)

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS

- 1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE MO-229 VARIATION OF (WEED-1)
- 2. DRAWING NOT TO SCALE
- 3. ALL DIMENSIONS ARE IN MILLIMETERS
 4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE
- 5. EXPOSED PAD SHALL BE SOLDER PLATED
- SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION
 ON TOP AND BOTTOM OF PACKAGE

相关器件

器件型号	描述	备注
基础设施	-	
LT5511	高线性度上变频混频器	RF 输出至 3GHz, 17dBm IIP3, 集成 LO 缓冲器
LT5512	1kHz 至 3GHz 高信号电平下变频混频器	20dBm IIP3,集成 LO 缓冲器,HF/VHF/UHF 优化
LT5514	具有数字控制增益的超低失真、 IF 放大器/ADC 驱动器	850MHz 带宽,0IP3 = 47dBm/100MHz,10.5dB 至 33dB 增益控制范围
LT5515	1.5GHz 至 2.5GHz 直接转换正交解调器	20dBm IIP3,集成 LO 正交发生器
LT5516	0.8GHz 至 1.5GHz 直接转换正交解调器	21.5dBm IIP3,集成 LO 正交发生器
LT5517	40MHz 至 900MHz 正交解调器	21dBm IIP3,集成 LO 正交发生器
LT5518	1.5GHz 至 2.4GHz 高线性度直接 正交调制器	22.8dBm OIP3/2GHz,-158.2dBm/Hz 噪声层,50Ω 单端 L0 和 RF 端口, 4 通道 W-CDMA ACPR = -64dBc/2.14GHz
LT5519	0.7GHz 至 1.4GHz 高线性度上变频 混频器	17.1dBm IIP3/1GHz,采用 50Ω 匹配的集成 RF 输出变压器, 单端 LO 和 RF 端口操作
LT5520	1.3GHz 至 2.3GHz 高线性度上变频 混频器	15.9dBm IIP3/1.9GHz,采用 50Ω 匹配的集成 RF 输出变压器, 单端 LO 和 RF 端口操作
LT5521	10MHz 至 3700MHz 高线性度上变频 混频器	24.2dBm IIP3/1.95GHz,NF = 12.5dB,3.15V 至 5.25V 电源, 单端 LO 端口操作
LT5522	400MHz 至 2.7GHz 高信号电平下变频 混频器	4.5V 至 5.25V 电源,25dBm IIP3/900MHz,NF = 12.5dB, 50Ω 单端 RF 和 LO 端口
LT5524	具有数字可编程增益的低功率,低失真 ADC 驱动器	450MHz 带宽,40dBm OIP3,4.5dB 至 27dB 增益控制
LT5525	高线性度,低功率下变频混频器	50Ω 单端 LO 和 RF 端口,17.6dBm IIP3/1900MHz,I _{CC} = 28mA
LT5526	高线性度,低功率有源混频器	3V 至 5.3V 电源,16.5dBm IIP3,100kHz 至 2GHz RF,NF = 11dB, I _{CC} = 28mA,-65dBm LO-RF 泄漏
LT5527	400MHz 至 3.7GHz 高信号电平下变频 混频器	IIP3 = 23.5dBm 和 NF = 12.5dB/1900MHz,4.5V 至 5.25V 电源, I _{CC} = 78mA,单端 LO 和 RF 端口
LT5528	1.5GHz 至 2.4GHz 高线性度直接正交调 制器	21.8dBm OIP3/2GHz,-159.3dBm/Hz 噪声层,50Ω,0.5V _{DC} 基带接口, 4 通道 W-CDMA ACPR = -66dBc/2.14GHz
LT5568	700MHz 至 1050MHz 高线性度直接正交调制器	22.9dBm OIP3,-160dBm/Hz 噪声层,-46dBc 镜频抑制,-43dBm LO 泄漏
RF 功率检波器	e di	
LTC®5505	动态范围大于 40dB 的 RF 功率检波器	300MHz 至 3GHz, 温度补偿, 2.7V 至 6V 电源
LTC5507	100kHz 至 1000MHz RF 功率检波器	100kHz 至 1GHz,温度补偿,2.7V 至 6V 电源
LTC5508	300MHz 至 7GHz RF 功率检波器	44dB 动态范围,温度补偿,SC70 封装
LTC5509	300MHz 至 3GHz RF 功率检波器	36dB 线性动态范围,低功耗,SC70 封装
LTC5532	300MHz 至 7GHz 精准 RF 功率检波器	精准 V _{OUT} 偏移控制,可调增益和偏移电压
LT5534	具有 60dB 动态范围的 50MHz 至 3GHz 对数 RF 功率检波器	在整个温度范围内具有 ±1dB 输出变化,38ns 响应时间
LTC5536	具有快速比较器的精准 600MHz 至 7GHz RF 检波器	25ns 响应时间,比较器基准输入,锁存器使能输入, -26dBm 至 +12dBm 输入范围
LT5537	宽动态范围对数 RF/IF 检波器	低频至 800MHz, 83dB 动态范围, 2.7V 至 5.25V 电源