

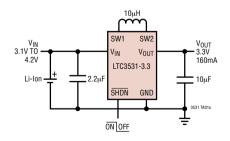
200mA 降压-升压型 同步 DC/DC 转换器

特点

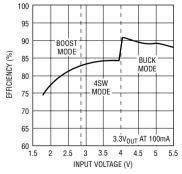
- 可由高于、低于或等于输出电压的输入电压获得 稳压输出
- 单个电感器
- 效率高达 90%
- V_{IN} 范围:1.8V 至 5.5V
- 可由 3.6V 输入获得 3.3Vour / 200mA
- 可由 2.5V 输入获得 3Vour / 125mA
- 固定 VOUT 版本 (TSOT、DFN 封装):3.3V、3V
- 可调 V_{OUT} 版本 (DFN 封装): 2V 至 5V
- 突发模式 (Burst Mode®) 操作, 无外部补偿
- 超低静态电流:16µA, 停机电流 <1µA
- 只需 3 个外部元件
- 短路保护
- 停机模式中的输出断接
- 采用6引脚 ThinSOT 和 3mm×3mm DFN 封装

府 用

- 手持式仪器
- MP3 播放机
- 手持式电脑
- PDA / GPS


描述

LTC[®]3531/LTC3531-3.3/LTC3531-3 是同步降压-升压型 DC/DC 转换器,它们能在输入电压高于、低 于或等于输出电压的条件下运作。该 IC 所采用的拓 扑结构可通过所有操作模式提供一个连续转换,从 而使得该产品成为单节锂离子电池和多节碱性电池 或镍电流应用的理想选择。该转换器可工作于突发 模式,并以最大限度地缩减了解决方案的占板面积 和元件数目,并在一个宽负载电流范围内提供了高 转换效率。

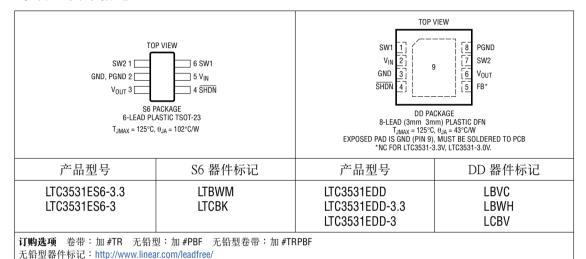

这些器件包括两个 0.5Ω 的 N 沟道 MOSFET 开 关和两个 P 沟道开关 $(0.5\Omega \cdot 0.8\Omega)$ 。静态电流通常为 $16\mu A$,从而令其成为电池供电型应用的理想之选。其他特点包括: $<1\mu A$ 的停机电流、电流限制、热停机和输出断接功能。这些器件采用 6 引脚 ThinSOTTM 封装 (固定电压版本)或 $3mm \times 3mm$ DFN 封装 (固定和可调电压版本)。

☑ LT 、LTC 和LT 是凌特公司的注册商标。 所有其他商标均为其各自拥有者的产权。 Burst Mode 是凌特公司的注册商标。 ThinSOT 是凌特公司的商标。 受包括第6166527 号美国专利的保护。

典型应用

效率与 VIN 的关系曲线

3531 TA01b


3531f

绝对最大额定值 (注1)

V_{IN}, V_{OUT}, SWA, SWB, SHDN 电压 -0.3 至 6V SWA, SWB 电压, <100ns 脉冲 -0.3 至 7V 工作温度范围(注 2)......-40℃ 至 85℃ 贮存温度范围-65℃ 至 125℃ 引脚温度 (TS6,焊接时间 10 秒)300℃

封装/订购信息

对于规定工作温度范围更宽的器件,请咨询凌特公司。

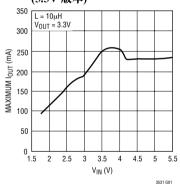
电 特 性 凡标注 ● 表示该指标适合整个工作温度范围,否则仅指 T_A = 25 $^{\circ}$ $^{\circ}$ V_{IN} = 3.6 V , V_{OUT} = 3.3 V ,除非特别注明。

参数		条件		最小值	典型值	最大值	单位
V _{IN}							
最小启动电压			•		1.65	1.8	V
V _{OUT} 调节							
输出电压 (3.3V 版本)		无负载	•	3.25	3.32	3.39	V
输出电压(3V版本)		无负载	•	2.95	3.02	3.09	V
FB 电压(可调版本)		无负载	•	1.20	1.225	1.25	V
FB 输入电流 (可调版本)		V _{FB} = 1.225V			1	50	nA
工作电流							
睡眠模式中的静态电流:	V_{IN}	$V_{IN} = 5V , V_{OUT} = 3.6V , FB = 1.3V$			16	30	μА
	V _{OUT}	V _{OUT} = 3.6V			6	10	μΑ
停机电流	V_{IN}	SHDN = 0V , V _{OUT} = 0V				1	μΑ
开关性能							
NMOS 开关漏电流		开关 B 和 C			0.2	2	μΑ
PMOS 开关漏电流		开关 A 和 D			0.2	2	μΑ
NMOS B , C R _{DSON}		V _{IN} = 5V			0.5		Ω
PMOS A R _{DSON}		V _{IN} = 5V			0.5		Ω

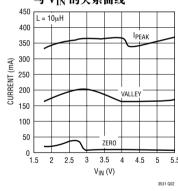
35311

电 特 性 凡标注 ● 表示该指标适合整个工作温度范围,否则仅指 T_A = 25 $\mathbb C$ 。 V_{IN} = 3.6V , V_{OUT} = 3.3V ,除非特別注明。

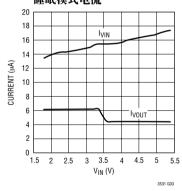
参数	条件	最小值	典型值	最大值	单位
PMOS D R _{DSON} (3.3V 版本)	V _{OUT} = 3.1V		0.8		Ω
PMOS D R _{DSON} (3V 版本)	V _{OUT} = 2.8V		0.9		Ω
峰值电流限值	$L = 10 \mu H$, $V_{IN} = 5 V$	295	365	460	mA
SHDN					
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		0.4	1	1.4	V
SHDN 迟滞			60		mV
SHDN 漏电流	V _{SHDN}		0.01	1	μΑ

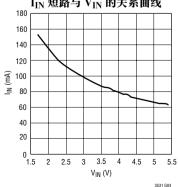

注1:绝对最大额定值是指超出该值则器件的使用寿命有可能受 损。

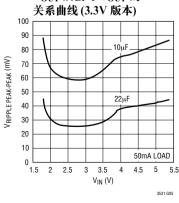
注2:该IC备有用于在短暂过载条件下对器件提供保护的过热保 护功能。当过热保护功能处于有效状态时结温将超过 125℃。连续工作在规定的最大工作结温以上有可能导致器 件性能劣化或发生故障。

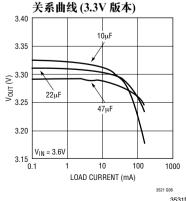

注3:LTC3531 在0℃至70℃的范围内保证能够满足性能规格的 要求。在-40℃至85℃工作温度范围内的指标通过设计、 特性分析和统计过程的相关性来保证。

典型性能特征 TA=25℃,除非特别注明。

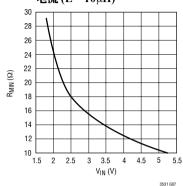

最大 Iout 与 Vin 的关系曲线 (3.3V 版本)

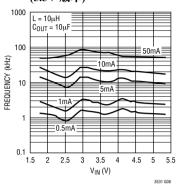

IPEAK , IVALLEY , IZERO 与 V_{IN} 的关系曲线


睡眠模式电流

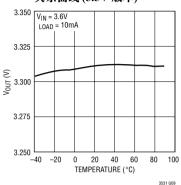

I_{IN} 短路与 V_{IN} 的关系曲线

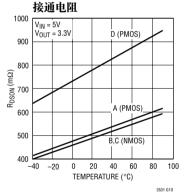
Vour 纹波与 Cour 的


负载调节性能与 Cour 的

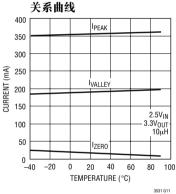


典型性能特征 TA=25℃,除非特别注明。

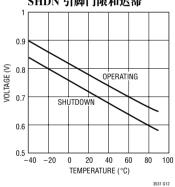




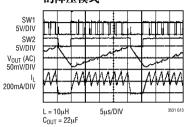
突发频率与负载的关系曲线 (3.3V 版本)



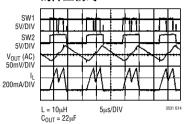
VOUT 调节性能与温度的 关系曲线 (3.3V 版本)



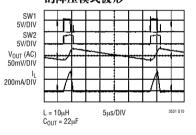
IPEAK, IVALLEY 与温度的

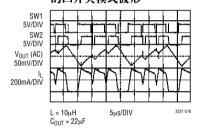


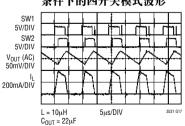
SHDN 引脚门限和迟滞

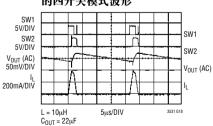


典型性能特征 TA=25℃,除非特别注明。

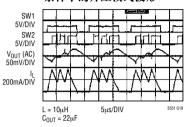

 $5V_{IN}$, $3.3V_{OUT}$ 200mA 条件下的降压模式

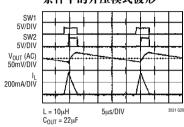

5V_{IN}, 3.3V_{OUT} 100mA 条件下 的降压模式


5V_{IN}, 3.3V_{OUT} 20mA 条件下 的降压模式波形

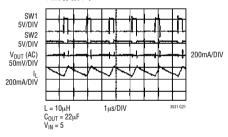

3.6V_{IN}, 3.3V_{OUT} 200mA 条件下 的四开关模式波形

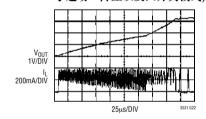
3.6V_{IN}, 3.3V_{OUT} 100mA 条件下的四开关模式波形

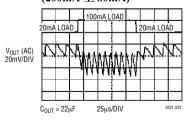

3.6V_{IN}, 3.3V_{OUT} 20mA 条件下 的四开关模式波形

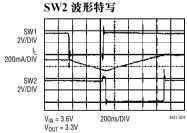


典型性能特征 T_A=25℃,除非特别注明。


2.5V_{IN}, 3.3V_{OUT} 100mA 条件下的升压模式波形


2.5V_{IN}, 3.3V_{OUT} 20mA 条件下的升压模式波形


短路输出


在 3.3V_{OUT} 条件下向 50mA 负载输送启动电流 (先后显示 了起动、降压以及四开关模式)

3.6V_{IN}、3.3V_{OUT} 负载阶跃 (200mA 至 80mA)

四开关模式中的 SW1 和 SW2 油形特定

3531

引脚功能 ThinSOT/DFN 封装

SW2 (引脚 1/引脚 7):连接有内部开关 C 和 D 的降 压-升压开关引脚。如需实现中等幅度的效率改善,则可在 SW2 和 V_{OUT} 之间连接一个肖特基二极管。 应最大限度地缩短走线长度,以抑制 EMI。

GND (引脚 2/引脚 3):用于 IC 的信号地。

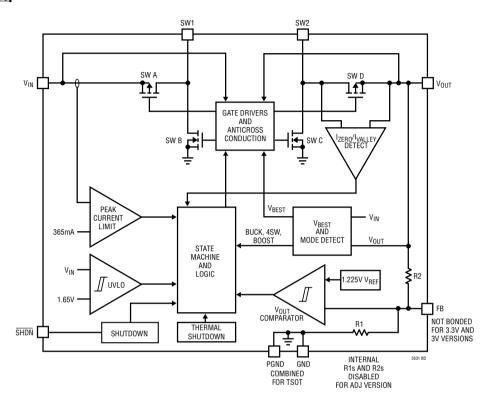
PGND (引脚 2/引脚 8):用于 IC 的电源地。(在 ThinSOT 封装器件版本上共用)

Vour (引脚 3/引脚 6):降压-升压型同步整流器的输出。在 Vour 和 GND 之间布设了一个滤波电容器。建议在尽可能靠近 Vour 和 GND 引脚的地方安放一个陶瓷旁路电容器。

SHDN (引脚 4/引脚 4):外部停机引脚。在该引脚上施加一个低于 0.4V 的电压将关断转换器。在该引脚上施加一个高于 1.4V 的电压将使能转换器。

 V_{IN} (引脚 5/引脚 2):用于降压-升压型转换器的输入电源引脚。应在 V_{IN} 和 GND 之间布设一个最小 $2.2\mu F$ 的陶瓷电容器。

FB (NA/引脚 5): 用于输出电压可调型器件版本的反馈引脚。把电阻分压器抽头连接于此。输出电压的可调节范围为 2V 至 5V。


$$V_{OUT} = 1.225 \left(1 + \frac{R2}{R1} \right)$$

SW1 (引脚 6/引脚 1):连接有内部开关 A 和 B 的降压-升压开关引脚。把电感器连接在 SW1和 SW2 之间。

裸露衬垫 (引脚 9,DFN 封装):应焊接至 PCB 的地,以实现最佳的散热性能。

方框图

工作原理

LTC3531、LTC3531-3.3 和LTC3531-3 同步降压-升压型 DC/DC 转换器利用突发模式控制技术在一个 宽动态负载电流范围内实现了高效率。一个具有 2% 准确度的比较器被用来监视输出电压。如果 V_{OUT} 高 于其设定的基准门限,则不会进行开关操作,并且 只从电源吸收静态电流(睡眠模式)。当 V_{OUT} 降至基 准门限以下时,IC 被"唤醒",开关操作开始,且输 出电容器被充电。输出电容器的数值、负载电流和 比较器迟滞(约1%)决定了在器件返回睡眠模式之前 输出电容器的电荷泵送所需的电流脉冲的数量。

为了确定转换器的最佳工作模式,LTC3531包含了第二个比较器,用于监视 $V_{\rm IN}$ 和 $V_{\rm OUT}$ 之间的相对电压差。图1示出了各种工作模式中的输入和输出电压,以及典型电感器电流。开关 A 和 D 处于接通状态时的电流波形区域提供了最高的效率,因为能量是直接从输入电源传输至输出端的。

升压模式

如果 V_{IN} 比 V_{OUT} 低约 400mV,则 LTC3531 工作于升压模式。参阅图 1 (左部),当 V_{OUT} 降至其调节电压以下时,开关 A 和 C 接通 (V_{IN} 加在电感器的两端),而且电流斜坡上升,直至检测到 I_{PEAK} 为止。当出现这种情况时,C 被关断,D 被接通,电流被输送至输出电容器 (V_{IN} - V_{OUT} 被施加于电感器的两端)。

当 D 接通时,电感器电流下降,直至检测到一个 I_{VALLEY} 为止。对于一个给定的峰值电流,终止于 I_{VALLEY} (而不是 I_{ZERO}) 将使负载电流供应能力有所提高。这种先 AC、后 AD 的开关序列反复进行,直到输出被提升至其调节电压以上、检测到一个最终 I_{ZERO} 和器件恢复睡眠模式为止 (在所有工作模式中,一旦 V_{OUT} 高于其设定值,则 I_{VALLEY} 被忽略,而采用 I_{ZERO})。

四开关模式

如果 $(V_{OUT} + 400 \text{mV}) < 50 \, V_{IN} < (V_{OUT} + 800 \text{mV})$,则 LTC3531工作于四开关升压/降压模式。我们回顾一下图 1 (中部),当 V_{OUT} 降至其调节电压以下时,开关 A 和 C 被接通,电流斜坡上升,直至检测到一个 I_{PEAK} 为止。和升压模式操作一样,C 随后被关断,D 接通,电流被输送至输出端。当 A 和 D 接通时,电感器电流斜率取决于 V_{IN} 和 V_{OUT} 之间的关系以及开关的 R_{DSON} 。在四开关模式中,一个 t_{OFF} 定时器(约 3μ s)被用来终止 AD 脉冲。一旦 t_{OFF} 定时器结束计时操作,开关 A 被关断,B 接通,电感器电流斜坡下降 $(V_{OUT}$ 被加在电感器的两端),直至检测到 I_{VALLEY} 为止。该序列重复进行,直到输出被调节、BD 开关被接通和检测到一个最终 I_{ZERO} 为止。在所有操作模式中,防交叉传导电路都将确保 P 沟道

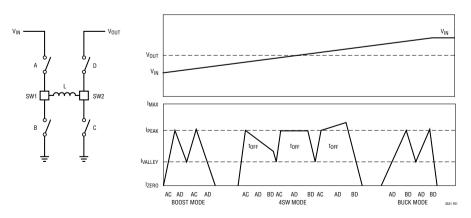


图1:电压和电流波形

工作原理

MOSFET 和 N 沟道 MOSFET 开关对 (A 和 B 或 D 和 C) 绝不会同时接通。

降压模式

如果 $V_{\rm IN}$ 比 $V_{\rm OUT}$ 高约 $800 {\rm mV}$,则 LTC3531 工作于降压模式。当把 $R_{\rm DSONS}$ 考虑在内时, $V_{\rm IN}$ 和 $V_{\rm OUT}$ 之间的这种较高偏移量 $(800 {\rm mV})$ 是必需的,旨在确保电感器两端具有足够的磁化电压。在降压模式周期的起点 (图 1 的右部),开关 A 和 D 被接通 $(V_{\rm IN} - V_{\rm OUT}$ 被施加于电感器的两端),电流被输送至输出端,并斜坡上升,直至检测到 $I_{\rm PEAK}$ 为止。当出现这种情况时,A 关断,B 接通,电感器电流减小 $(-V_{\rm OUT}$ 被加在电感器的两端),直至检测到一个 $I_{\rm VALLEY}$ 为止。这种先 AD、后 BD 的开关序列反复进行,直到输出被提升至其调节电压以上、检测到一个最终 $I_{\rm ZERO}$ 和器件恢复睡眠模式为止。

启动模式

在 V_{OUT} 达到约 1.6V 之前,开关 D 被停用,而其体二极管被用于把电流传输至输出电容器。在启动模式中, I_{VALLEY}/I_{ZERO} 检测电路被停用,并采用一种替代算法来控制电感器电流。当使 LTC3531 退出停机模式时 (假设 V_{OUT} 被放电),开关 A 和 C 被接通,直至电感器电流达到 I_{PEAK} 为止。开关 AC 随后被关断,电感器电流将通过开关 B 和 D 体二极管流至输出端。开关 B/D 体二极管的导通周期由 I_{OFF} 定时器控制在 800ns 左右。这种在电感器电流达到 I_{PEAK} 之前开关 AC 接通、而后开关 B/D 体二极管导通约 800ns 的序列重复进行,直至 V_{OUT} 达到约 1.6V 为

止。一旦达到该门限,LTC3531 将通过所需的工作模式进行转换,直到 Vour 进入调节状态为止。

由于检测电路中的传播延迟的缘故, I_{PEAK} 、 I_{VALLEY} 和 I_{ZERO} 电流的大小有可能随著 V_{IN} 、 V_{OUT} 和工作模式的不同而发生改变。

LTC3531 的其他功能

停机:通过把 \overline{SHDN} 引脚电压拉至 0.4V 以下便可关断该器件,而把该引脚的电压上拉至 V_{IN} 或 V_{OUT} 则可使该器件进入运行状态。请注意, \overline{SHDN} 引脚电压可被驱动至 V_{IN} 或 V_{OUT} 以上,只要它被限制在 6V 以下即可。

输出断接和涌入电流限制:LTC3531 是专为通过使两个 P 沟道 MOSFET 整流器开路来实现真正的输出断接而设计的。这使得 V_{OUT} 能够在停机期间变至 0V,从而不消耗输入电源的电流。它还在接通时提供了涌入电流限制功能,因而最大限度地减小了输入电源所承受的浪涌电流。

热停机:如果 片温度达到约150℃,则器件将进行热停机模式,而且所有的开关都将被关断。当片温度下降了10℃(标称值)时,器件将被重新使能。为了使LTC3531提供其可能的最大功率,必须布设一条优良的散热通路,以便把封装内部产生的热量散逸出去。建议采用印刷电路板上的多个通孔来使热量远离IC并传递至一个面积尽可能大的铜平面上。建议把封装的裸露衬垫焊接至GND平面(DFN 封装版本),以改善散热性能。

应用信息

元件选择

完成该降压-升压型转换器的设计只需三个功率 元件,输出电压可调器件版本需要 V_{OUT} 设定电阻 器。LTC3531 的高工作频率和低峰值电流允许采用低 值、扁平的电感器和纤巧型外部陶瓷电容器。

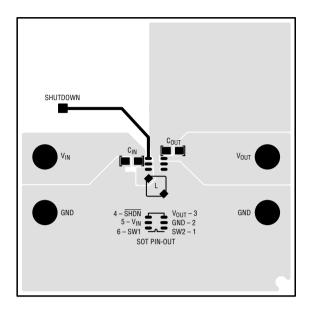
电感器的选择

为了获得最佳的效率水平,应选择一个采用高频磁芯材料 (例如铁氧体) 的电感器以减少磁芯损耗。该电感器应具有低 DCR (直流电阻) 以减少 I^2R 损耗,且必须能在不发生饱和的情况下处理峰值电感器电流。建议采用一个额定电流大于 500mA、DCR 小于 $400m\Omega$ 、数值为 10μ H~ 20μ H 的电感器。

表 2: 电感器供应商资料

供应商	系列	电话	网址
COEV	DN4835	(800) 227-7040	www.coev.net
Colicraft	MSS4020 LP03310 DS1608	(847) 639-6400	www.coilcraft.com
Murata	LQH43CN LQH32CN	美国: (814) 237-1431 (800) 831-9172	www.murata.com
Sumida	CDRH4D18 CDRH3D16/HP	美国: (847) 956-0666 日本: 81-3-3607-5111	www.sumida.com
Toko	D312C D412C DB320C	(847) 297-0070	www.tokoam.com

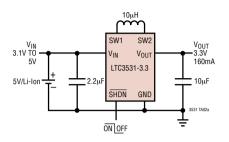
对于关注辐射噪声的应用,可采用环形或屏蔽电感器。表2罗列了一些电感器制造商。

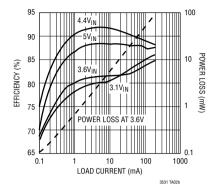

电容器的选择

该降压-升压型转换器需要两个电容器。X5R 型陶瓷电容器将最大限度地减小 ESL 和 ESR,并可在整个温度范围内维持额定电压条件下的电容值。 V_{IN} 电容器的数值应至少为 $2.2\mu F$ 。 V_{OUT} 电容器的数值应至少为 $2.2\mu F$ 。 V_{OUT} 电容器的数值应在 $4.7\mu F$ 至 $22\mu F$ 之间。如果需要较低的峰至峰输出电压纹波,则应采用一个数值较大的输出电容器。一个较大的输出电容器还将改善 V_{OUT} 上的负载调节性能。表 3 罗列了一些电容器制造商,可供选择输入和输出电容器之用。

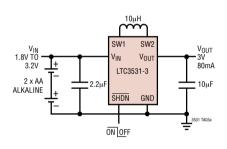
表 3: 电容器供应商资料

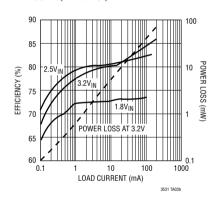
供应商	系列	电话	网址
AVX	X5R	(803) 448-9411	www.avxcorp.com
Murata	X5R	美国:(814) 237-1431 (800) 831-9172	www.murata.com
Sanyo	POSCAP	(619) 661-6322	www.sanyovideo.com
Taiyo Yunden	X5R	(408) 573-4150	www.taiyo-yuden.com
TDK	X5R	(847) 803-6100	www.component.tdk.com

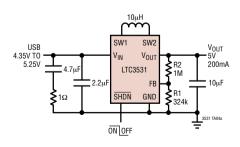

应用信息

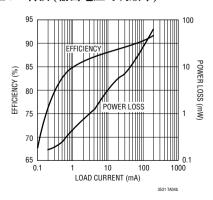


推荐布局 (SOT 封装版本)

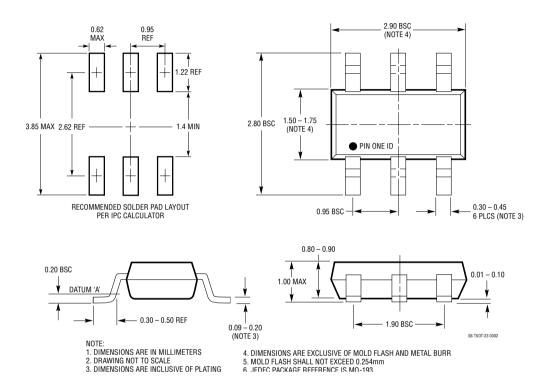

应用信息


采用 ThinSOT 封装的 5V/锂离子电池至 3.3V 转换 (3.3V 版本)



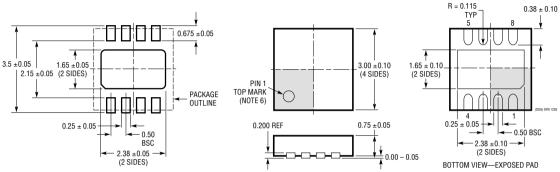

采用 ThinSOT 封装的 2AA 碱性电池至 3V 转换 (3V 版本)

采用 3mm×3mm DFN 封装的 USB 至 5V 转换 (输出电压可调版本)


3531f

封装描述

S6 封装 6 引脚塑料 TSOT-23

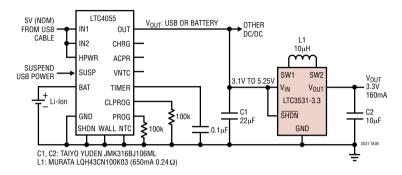

(参考 LTC DWG # 05-08-1636)

封装描述

DD 封装 8 引脚塑料 DFN (3mm × 3mm)

(参考 LTC DWG # 05-08-1698)

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS


NOTE:

- 1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)
- 2. DRAWING NOT TO SCALE
- 3. ALL DIMENSIONS ARE IN MILLIMETERS
- DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE
- 5. EXPOSED PAD SHALL BE SOLDER PLATED
- 6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON TOP AND BOTTOM OF PACKAGE

典型应用

具有 3.3V_{OUT} 和线性充电器的 完整 USB/锂离子电池供电系统

相关器件

器件型号	描述	备注
LT1930/LT1930A	1A (I _{SW}),1.2MHz/2.2MHz 高效升压型 DC/DC 转换器	V _{IN} : 2.6V 至 16V,V _{OUT(MAX)} = 34V, I _Q = 4.2mA/5.5mA,I _{SD} < 1μA,ThniSOT 封装
LTC3400/LTC3400B	600mA (I _{SW}),1.2MHz 同步升压型 DC/DC 转换器	V_{IN} : 0.85V 至 5V, $V_{\text{OUT}(\text{MAX})}$ = 5V, I_{Q} = 19 μ A/300 μ A, I_{SD} < 1 μ A,ThinSOT 封装
LTC3401/LTC3402	1A/2A (I _{SW}),3MHz 同步升压型 DC/DC 转换器	V _{IN} : 0.5V 至 5V,V _{OUT(MAX)} = 6V, I _Q = 38μA,I _{SD} < 1μA,MS 封装
LTC3405/LTC3405A	300mA (I _{OUT}),1.5MHz 同步降压型 DC/DC 转换器	V _{IN} : 2.7V 至 6V,V _{OUT(MIN)} = 0.8V, I _Q = 20μA,I _{SD} ≤ 1μA,MS10 封装
LTC3406/LTC3406B	600mA (I _{OUT}),1.5MHz 同步降压型 DC/DC 转换器	V _{IN} : 2.5V 至 5.5V,V _{OUT(MIN)} = 0.6V, I _Q = 20μA,I _{SD} ≤ 1μA,ThinSOT 封装
LTC3421	3A (I _{SW}),3MHz 同步升压型 DC/DC 转换器	V_{IN} : 0.5V 至 4.5V, $V_{OUT(MAX)}$ = 5.25V, I_Q = 12 μ A, I_{SD} < 1 μ A,QFN 封装
LTC3422	1.5A (I _{SW}),3MHz 同步升压型 DC/DC 转换器	V_{IN} : 0.5V 至 4.5V, $V_{OUT(MAX)}$ = 5.25V, I_Q = 25 μ A, I_{SD} < 1 μ A,3mm × 3mm DFN 封装
LTC3426	采用 SOT-23 封装的 2A (I _{SW}), 1.2MHz 升压型 DC/DC 转换器	V _{IN} : 1.6V 至 5V,V _{OUT} 高达 5.5V
LTC3428	4A (I _{SW}),1.2MHz 升压型 DC/DC 转换器	V _{IN} : 1.6V 至 5V,V _{OUT} 高达 5.5V
LTC3429	600mA (I _{SW}),500kHz 同步升压型 DC/DC 转换器	V _{IN} : 0.5V 至 4.4V,V _{OUT(MIN)} = 5V, I _Q = 20μA,I _{SD} < 1μA,QFN 封装
LTC3440	600mA (I _{OUT}),2MHz 同步降压-升压型 DC/DC 转换器	V_{IN} : 2.5V 至 5.5V, $V_{\text{OUT(MIN)}}$ = 5.5V, I_{Q} = 25 μ A, I_{SD} < 1 μ A,MS、DFN 封装
LTC3441	600mA (I _{OUT}), 2MHz 同步降压-升压型 DC/DC 转换器	V _{IN} : 2.5V 至 5.5V,V _{OUT(MIN)} = 5.5V, I _Q = 25μA,I _{SD} < 1μA,DFN 封装
LTC3442	具有自动突发模式的 2MHz 同步降压-升压型 DC/DC 转换器	V _{IN} : 2.4V 至 5.5V,V _{OUT} 高达 5.25V
LTC3443	1.2A (I _{OUT}),600kHz 同步降压-升压型 DC/DC 转换器	V _{IN} : 2.4V 至 5.5V,V _{OUT(MIN)} = 5.25V, I _Q = 28μA,I _{SD} < 1μA,MS 封装
LTC3458	1.4A, 1.5MHz 同步升压型 DC/DC 转换器	V _{IN} : 1.5V 至 6V,V _{OUT} 高达 7.5V
LTC3458L	1.7A,1.5MHz 同步升压型 DC/DC 转换器	V _{IN} : 1.5V 至 6V,V _{OUT} 高达 6V
LTC3459	10V 微功率同步升压型 DC/DC 转换器	V _{IN} : 1.5V 至 5.5V,V _{OUT} 高达 10V
LTC3525/ LTC3525-3.3/ LTC3525-5	具有输出断接功能,400mA (I _{SW}),同步升压型 DC/DC 转换器	V_{IN} : 0.5V 至 4.5V \cdot I_0 = $7\mu A$ \cdot I_{SD} < $1\mu A$ \cdot $2mm \times 2mm$ SC70 封装