

采用 ThinSOT™封装的 照相闪光灯电容器式充电器 2003年10月

特点

- 高集成度 IC 减少了解决方案的外形尺寸
- 采用小型变压器:

5.8mm $\times 5.8$ mm $\times 3$ mm

■ 快速照相闪光灯充电时间:

LT3468: 4.6s (0V 至 320V , 100μ F , $V_{IN} = 3.6V$) LT3468-1:5.5s (0V 至 320V,50 μ F, V_{IN} = 3.6V)

■ 受控输入电流:

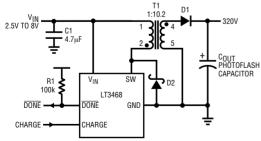
500mA (LT3468) 225mA (LT3468-1)

- 支持从单节锂离子电池或任何电压范围为 2.5V 至 16V 的电源运作
- 可调输出电压
- 无需输出分压器
- 可对任何容量的照相闪光灯电容器进行充电
- 扁平(高度仅1mm)SOT-23 封装

应 用

- 数码相机 / 电影摄像机闪光灯
- PDA / 蜂窝电话闪光灯
- 应急闪光灯

描述


LT®3468/LT3468-1 是专为对数码相机和电影摄 像机中的闪光灯电容器进行充电而设计的高集成度 IC。一种新型控制技术*的运用允许采用体积极小的 变压器。这两款器件都包含一个片上高压 NPN 电源 开关。输出电压检测*电路完全内置于器件之中,从 而免除了增设任何分立齐纳二极管或电阻器的需 要。输出电压调节可简单地通过改变变压器的匝数 来完成。LT3468 具有1.4A 的变压器主端电流限值, 而 LT3468-1 的限值则为 0.7A。这些不同的电流限值 电平使得LT3468 和LT3468-1 分别具有500mA 和 225mA 的良好受控输入电流。除了电流限值不同之 外,这两款器件在其他方面是完全相同的。

CHARGE 引脚为用户提供了对器件进行全面控 制的能力。把 CHARGE 引脚驱动至低电平会使器件 进入停机模式。DONE 引脚可指示器件完成充电操作 的时刻。LT3468 系列器件采用纤巧的扁平(高度仅 1mm) SOT-23 封装。

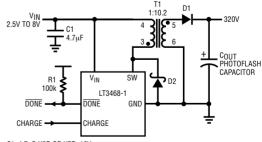
▲▼、LTC 和LT 是凌特公司的注册商标。 ThinSOT 是凌特公司的商标。* 美国专利第 6,518,733 号

典型应用

高压危险—— 只允许经过高压操作专业培训的人员来操作

C1: 4.7µF, X5R OR X7R, 10V

T1: KIJIMA MUSEN PART# SBL-5.6-1, LPRI = 10µH, N = 10.2


D1: VISHAY GSD2004S DUAL DIODE CONNECTED IN SERIES

D2: ZETEX ZHCS400 OR EQUIVALENT

R1: PULL UP RESISTOR NEEDED IF DONE PIN USED

3468 TA01

图1:LT3468 照相闪光灯充电器采 用高度为 4mm 的高效变压器

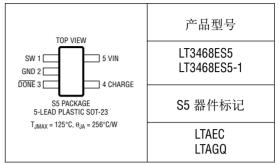
C1: 4.7uF. X5R OR X7R. 10V

T1: KIJIMA MUSEN PART# SBL-5.6S-1, L_{PRI} = 24µH, N = 10.2 D1: VISHAY GSD2004S DUAL DIODE CONNECTED IN SERIES

D2: ZETEX ZHCS400 OR EQUIVALENT R1: PULL UP RESISTOR NEEDED IF DONE PIN USED

> 图 2: LT3468-1 照相闪光灯充电器采 用高度为 3mm 的高效变压器

34681


3468 TANS

绝对最大额定值(注1)

V _{IN} 电压	16V
SW 电压	0.4V 至 50V
CHARGE 电压	10V
DONE 电压	10V
流人 DONE 引脚的电流	±1 mA
最大结温	125°C
工作温度范围 (注 2)	40°C至85°C
贮存温度范围	65°C至150°C
引脚温度(焊接时间10秒)	300°C

封装/订购信息

对于规定工作温度范围更宽的器件,请咨询凌特公司。

电 特 性 凡标注 ●表示该指标适合整个工作温度范围,否则仅指 $T_A = 25$ \mathbb{C} 。 $V_{IN} = 3V$, $V_{CHARGE} = V_{IN}$,除非特别注明。(注 2)表中给出的规格值适用于 LT3468 和 LT3468-1,除非特别注明。

参数	条件	最小值	典型值	最大值	单位
静态电流	未进行开关操作 V _{CHARGE} = 0V		5 0	8 1	mA μA
输入电压范围		2.5		16	V
开关电流限值	LT3468 (注 3) LT3468-1	1.1 0.45	1.2 0.55	1.3 0.65	A A
开关 V _{CESAT}	LT3468 · I _{SW} = 1A LT3468-1 · I _{SW} = 400mA		330 150	430 200	mV mV
V _{OUT} 比较器跳变电压	作为 V _{SW} - V _{IN} 来测量	31	31.5	32	V
V _{OUT} 比较器过驱动电压	300ns 脉冲宽度		200	400	mV
DCM 比较器跳变电压	作为 V _{SW} - V _{IN} 来测量	10	36	80	mV
CHARGE 引脚电流	V _{CHARGE} = 3V V _{CHARGE} = 0V		15 0	40 0.1	μ Α μ Α
开关漏电流	V _{IN} = V _{SW} = 5V, 停机模式)	0.01	1	μА
CHARGE 输入电压高		1			V
CHARGE 输入电压低)		0.3	V
DONE 输出信号高	在 V _{IN} 与 DONE 之间连接有 100kΩ 电阻		3		V
DONE 输出信号低	DONE 引脚流入 33µA 电流		100	200	mV
DONE 漏电流	V _{DONE} = 3V, DONE NPN 晶体管关断		20	100	nA

注1:绝对最大额定值是指超出该值则器件的使用寿命可能会受损。

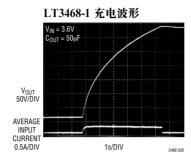
注 2: LT3468E/LT3468E-1 保证在 0°C 至 70°C 的范围内满足规定性能要求。在 -40°C 至 85°C 工作温度范围内的指标通过设计、特性分析和统计过程中的相关性来保证。

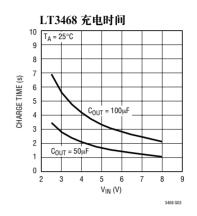
注 3: 这里给出的规格是用于静态测试的。实际应用中的电流限值将略高一些。

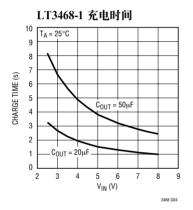
TECHNOLOGY

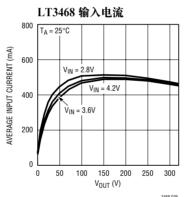
典型性能特征 LT3468的曲线是采用图1所示电路测得的,LT3468-1的曲线是采用图2所示电路测得的,除非特别注明。

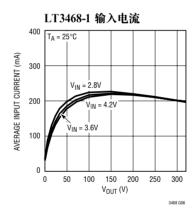
LT3468 充电波形

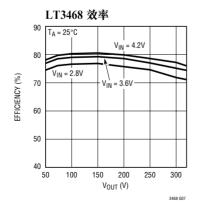

V_{IN} = 3.6V
C_{OUT} = 100μF

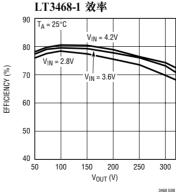

SOV/DIV

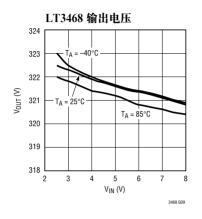

AVERAGE
INPUT
LA/DIV

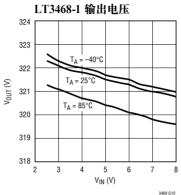

1s/DIV

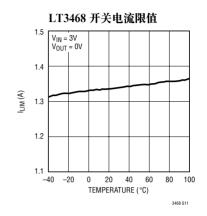

3468 601

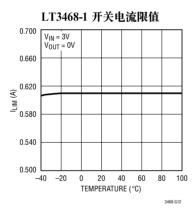


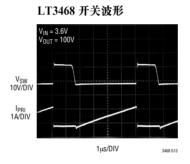


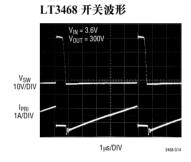


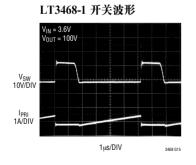


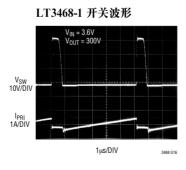

34681

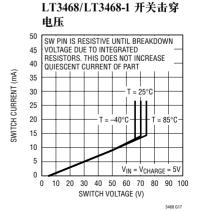



典型性能特征 LT3468的曲线是采用图1所示电路测得的,LT3468-1的曲线是采用图2所示电路测得的,除非特别注明。









34681i

TINEAR TECHNOLOGY

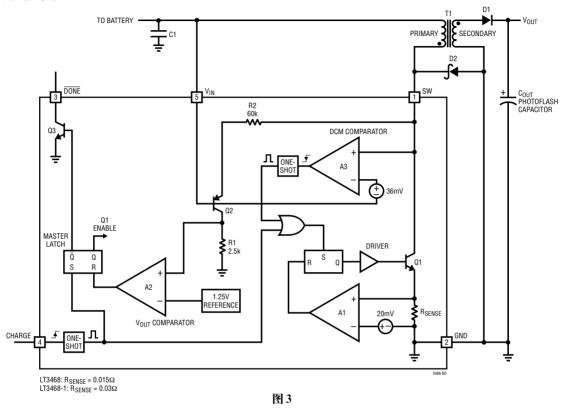
引脚功能

根据以下公式来选择匝数比 N:

$$N = \frac{V_{OUT} + 2}{31.5}$$

其中: VOUT 为期望的输出电压。

您必须在 GND 与 SW 引脚之间连接一个肖特基二 极管,并将正极设置在 GND 引脚上以实现电路的 正确操作。请参阅"应用信息"部分以了解更加详细的信息。


GND (引脚 2):地。直接连接至本机接地平面。

DONE(**引脚 3**): NPN 晶体管集电极开路指示引脚。 当达到目标输出电压时,NPN 晶体管接通。该引脚 需要一个上拉电阻器或电流源。

CHARGE (引脚 4): 充电引脚。该引脚上的一个低电平 (< 0.3V) 至高电平 (>1V) 的转换将把器件置于供电模式。一旦达到目标输出电压,器件即停止向输出供电。对该引脚进行电平变换将再次起动充电操作。将该引脚接地可关断器件。

方框图

工作原理

LT3468/LT3468-1 专为对照相闪光灯电容器进行快速和高效充电而设计。查阅图 3 可对器件的工作原理有一个最好的了解。当 CHARGE 引脚初次被驱动至高电平时,一个单触发脉冲将两个 SR 锁存器设置于正确状态。功率 NPN 器件 Q1接通且电流开始在变压器 T1 的主端中斜坡上升。比较器 A1 负责监视开关电流,当峰值电流达到 1.4A (LT3468) 或 0.7A (LT3468-1) 时,Q1关断。由于 T1 被用作一个回扫变压器,因此,SW 引脚上的回扫脉冲将导致 A3 的输出变成高电平。为此,SW 引脚上的电压必需至少比 $V_{\rm IN}$ 高 $36{\rm mV}$ 。

在此状态下,电流通过变压器副端和二极管 D1

输送至照相闪光灯电容器。当变压器副端电流降至零时,SW 引脚电压将开始骤然下降。当 SW 引脚电压降至比 $V_{\rm IN}$ 高 36 mV 或更低时,A3 (DCM 比较器) 的输出将走低。这将启动一个单触发脉冲并使 Q1 重新接通。该周期将继续向输出端供电。

输出电压检测是通过 $R2 \times R1 \times Q2$ 和比较器 A2 (V_{OUT} 比较器) 来完成的。选择合适的 R1 和 R2 阻值 以使得 A2 的输出在 SW 引脚电压比 V_{IN} 高 31.5V 时走高,从而使主锁存器复位。这将使 Q1 失效并中断供电。供电操作只能通过对 CHARGE 引脚进行电平变换来重新启动。

34681i

选择正确的器件(LT3468/LT3468-1)

两种 LT3468 器件版本的唯一不同之处在于峰值 电流电平。如需获得可能的最快充电时间,应采用 LT3468。LT3468-1 的峰值电流能力较低,是专为那 些电池漏电流限制条件更加严格的应用而设计的。 由于峰值电流较低,因此 LT3468-1 可以采用外形较 小的变压器。

变压器设计

对于任何的 LT3468/LT3468-1 设计而言,回扫变 压器是一个关键的元件。必须对其进行精心设计和 检查以使其不致在器件的任何引脚上引起过大的电 流或过高的电压。需要设计的主要参数列于表1。

第一个需要设定的变压器参数是匝数比 N。LT3468/LT3468-1通过监视 SW 引脚上的回扫波形来完成输出电压检测。当 SW 引脚电压比 $V_{\rm IN}$ 电压高出31.5V 时,器件将中断供电。于是,N的选择设定了目标输出电压,因为它改变了从输出至 SW 引脚的反

射电压的幅度。根据下面的公式来选择 N:

$$N = \frac{V_{OUT} + 2}{31.5}$$

其中 V_{OUT} 为期望的输出电压。分子中的 2 被用来对输出二极管压降的影响加以补偿。

因此,对于一个 320V 输出,N 应为 322/31.5 (即 10.2)。而对于一个 300V 输出,应选择 N = 302/31.5 (即 9.6)。

下一个需要设定的参数是主端电感 L_{PRI} 。根据下式来选择 L_{PRI} :

$$\mathsf{L}_{\mathsf{PRI}} \geq \frac{\mathsf{V}_{\mathsf{OUT}} \bullet 200 \bullet 10^{-9}}{\mathsf{N} \bullet \mathsf{I}_{\mathsf{PK}}}$$

其中 V_{OUT} 为期望的输出电压。N 为变压器的匝数 比。 I_{PK} 为 1.4 (LT3468) 或 0.7 (LT3468-1)。

L_{PRI}必需等于或大于该值以确保 LT3468/ LT3468-1具有足够的时间来对回扫波形做出响应。

表1:推荐的变压器参数

参数	名称	典型范围 LT3468	典型范围 LT3468-1	单位
L _{PRI}	主端电感	>5	>10	μН
L _{LEAK}	主端漏电感	100 至 300	200 至 500	nH
N	副端与主端的匝数比	8 至 12	8 至 12	
V _{ISO}	副端至主端的隔离电压	> 500	> 500	V
I _{SAT}	主端饱和电流	> 1.6	> 0.8	A
R _{PRI}	主端绕组电阻	< 300	< 500	mΩ
R _{SEC}	副端绕组电阻	< 40	< 80	Ω

所有其他的参数都必需满足或超过表 1 所列的推荐极限值。漏电感 I_{LEAK} 是一个特别重要的参数。当 LT3468/LT3468-1 的电源开关关断时,变压器主端的漏电感会在 SW 引脚上引起一个电压尖峰。尽管 SW 引脚的绝对最大额定值达 50V,但该电压尖峰的高度一定不得超过 40V。50V 的绝对最大额定值是一个隔直流电压规格 (假设功率 NPN 晶体管中的电流为零)。图 4 示出了图 1 所示电路的 SW 电压波形(LT3468)。请注意 SW 引脚的绝对最大额定值未被超过。图 5 示出了图 2 所示电路的 SW 电压波形(LT3468-1)。同样,未以牺牲 SW 引脚的绝对最大额定值为代价。一定要采用接近目标输出电压的 Vour

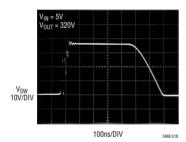


图 4: LT3468 SW 电压波形

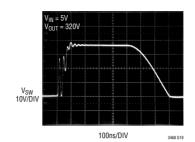


图 5: LT3468-1 SW 电压波形

来检查 SW 电压波形,因为这是针对 SW 电压的最差 条件。

不要把漏电感降到一个非常低的水平,这一点 很重要。尽管这样做会在SW引脚上产生一个非常低 的漏电尖峰,但变压器的寄生电容将有可能变大。 这将对照相闪光灯电路的充电时间产生不良影响。

凌特公司已与多家领先的磁性元件制造商合作 生产可与LT3468/LT3468-1 一起使用的预先设计的回 扫变压器。表2给出了多款此类变压器的细节信息。

表 2: 预先设计的变压器——均为典型规格值,除非特别注明。

配合使用的器件	变压器名称	外形尺寸 (W×L×H) mm	L _{PRI} (μH)	L _{PRI} 漏电感 (nH)	N	R _{PRI} (mΩ)	R _{SEC} (Ω)	供应商
LT3468 LT3468-1	SBL-5.6-1 SBL-5.6S-1	5.6×8.5×4.0 5.6×8.5×3.0	10 24	200(Max) 400(Max)	10.2 10.2	103 305	26 55	Kijima Musen 香港办事处 电话: (852) 2489-8266
LT3468 LT3468-1	LDT565630T-001 LDT565630T-002	5.8×5.8×3.0 5.8×5.8×3.0	6 14.5	200(Max) 500(Max)	10.4 10.2	100(Max) 240(Max)	10 (Max) 16.5 (Max)	电邮:kijimahk@netvigator.com TDK 芝加哥销售办事处 电话:(847) 803-6100 www.components.tdk.com
LT3468/LT3468-1 LT3468-1	T-15-089 T-15-083	6.4×7.7×4.0 8.0×8.9×2.0	12 20	400(Max) 500(Max)	10.2 10.2	211(Max) 675(Max)	27(Max) 35(Max)	Tokyo Coil Engineering Japan Office 电话: 0426-56-6336 www.tokyo-coil.co.jp

电容器的选择

输入旁路电容器应采用高品质的 X5R 或 X7R 型电容器。应确定器件具有足够的电压处理能力。

输出二极管的选择

整流二极管应为具有足够反向电压和正向额定 电流的低电容型二极管。二极管将承受的峰值反向 电压约为:

$$V_{PK-R} = V_{OUT} + (N \cdot V_{IN})$$

二极管的峰值电流仅仅为:

$$I_{PK-SEC} = \frac{1.4}{N} \text{ (LT3468)}$$

$$I_{PK-SEC} = \frac{0.7}{N} \text{ (LT3468-1)}$$

对于图 1 所示的电路,当 $V_{\rm IN}$ 为 5V 时, $V_{\rm PK-R}$ 为 371 V 且 $I_{\rm PK-SEC}$ 为 137mA。对于大多数 LT3468/LT3468-1 应用,推荐使用 GSD2004S 双二极管。另一种可选方案是采用 BAV23S 双二极管。Toshiba 公司制造了一种名为 1SS306 双二极管同样可满足所有的要求。表 3 列出了不同的二极管和相关的规格。请采用合适数目的二极管以获得所需的反向击穿电压。

SW 引脚箝位二极管的选择

需要采用图1中的二极管 D2来对 SW 节点进行 箝位。由于 LT3468/LT3468-1采用了新型控制电路, 因此,SW 节点有可能在开关周期过程中走至地电位 以下。箝位二极管能防止 SW 节点走至远远低于地电位。对于电路的正确操作来说,该二极管是必需的。推荐使用具有至少 500mA 峰值正向电流能力的 肖特基二极管。反向额定电压应为 40V 或更高。表4 列出了推荐使用的各种箝位二极管。

表 3: 推荐的输出二极管

器件型号	最大反向电压 (V)	最大正向连续电流 (mA)	电容 (pF)	供应商
GSD2004S (双二极管)	2 x 300	225	5	Vishay (402) 563-6866 www.vishay.com
BAV23S (双二极管)	2 x 250	225	5	Philips Semiconductor (800) 234-7381 www.philips.com
1SS306 (双二极管)	2 x 250	100	3	Toshiba (949) 455-2000 www.semicon.toshiba.co.jp

表 4: 推荐的箝位二极管

器件型号	最大反向电压 (V)	供应商
ZHCS400	40	Zetex (631) 360-2222 www.zetex.com
B0540W	40	Diodes Inc. (805) 446-4800 www.diodes.com

电路板布局

LT3468/LT3468-1 的高压操作要求对电路板布局格外谨慎。如果未进行精心的电路板布局,您就不可能获得产品广告中所宣称的性能。图 6 示出了推荐的元件布局方案。变压器副端的高压端面积应保持得尽可能小。还应注意所有高压节点的间隔均大

于最小间隔以满足电路板的击穿电压要求。必须将由 C1、T1的主端和 LT3468/LT3468-1 形成的电通路保持得尽可能短。如果该通路被随意布设得过长,则会使 T1 的漏电感显著增加,这会在 SW 引脚上引发过压状态。

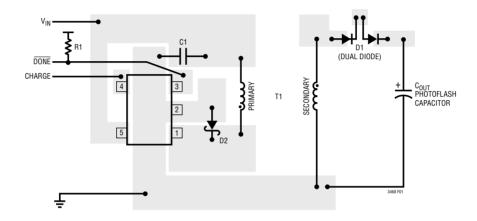
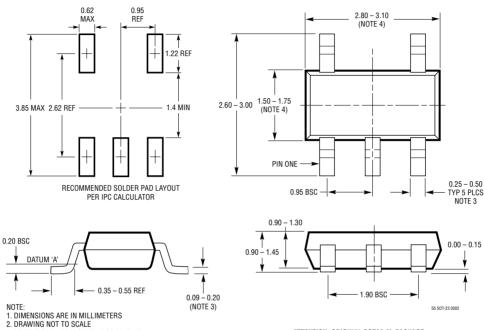
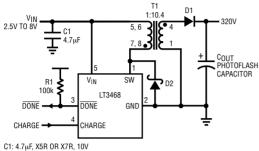



图6:建议的电路板布局:将由C1、变压器主端和LT3468/LT3468-1 形成的电通路保持得简短。

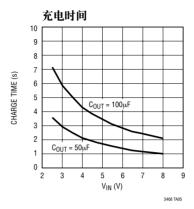
封装描述

S5 封装 5 引脚塑料 SOT-23 封装

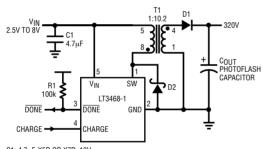
(参考LTCDWG#05-08-1633)


- 3. DIMENSIONS ARE INCLUSIVE OF PLATING 4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR
- 5. MOLD FLASH SHALL NOT EXCEED 0.254mm 6. PACKAGE EIAJ REFERENCE IS SC-74A (EIAJ)

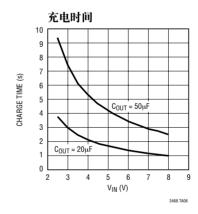
ATTENTION: ORIGINAL SOT23-5L PACKAGE.
MOST SOT23-5L PRODUCTS CONVERTED TO THIN SOT23
PACKAGE, DRAWING # 05-08-1635 AFTER APPROXIMATELY APRIL 2001 SHIP DATE



典型应用


LT3468 照相闪光灯电路采用高度为 3mm 的纤巧型变压器

T1: TDK PART# LD1565630T-001, L_{PRI} = 6_µH, N = 10.4 D1: VISHAY GSD2004S DUAL DIODE CONNECTED IN SERIES D2: ZETEX ZHCS400 OR EQUIVALENT R1: PULL UP RESISTOR NEEDED IF DONE PIN USED


LT3468-1 照相闪光灯电路采用高度为 3mm 的纤巧型变压器

C1: $4.7\mu\text{F},$ X5R OR X7R, 10V T1: TDK PART# LDT565630T-002, L $_{PRI}$ = 14.5 $\mu\text{H},$ N = 10.2 D1: VISHAY GSD2004S DUAL DIODE CONNECTED IN SERIES

D2: ZETEX ZHCS400 OR EQUIVALENT

R1: PULL UP RESISTOR NEEDED IF DONE PIN USED

相关器件

器件型号	描述	备注
LTC3407	双 600mA (I _{OUT})、1.5MHz 同步降压型 DC/DC 转换器	效率达 96%,V _{IN} :2.5V 至 5.5V,V _{OUT(MIN)} :0.6V, I _O :40μA,I _{SD} :<1μA,MS10E 封装
LT3420/LT3420-1	具有自动充电终止功能的 1.4A/1A、照相闪光灯 电容器式充电器	可由 5V 电源在 3.7 秒的时间里将 220 μ F 的电容器充电至 320 V , V_{IN} : 2.2 V 至 16 V , I_Q : 90 μ A , I_{SD} : <1 μ A , MS10 封装
LTC3425	5A I _{SW} 、8MHz、多相同步升压型 DC/DC 转换器	效率达 95%,V _{IN} :0.5V 至 4.5V,V _{OUT(MIN)} :5.25V, I _O :12μA,I _{SD} :<1μA,QFN-32 封装
LTC3440/LTC3441	600mA/1A(I _{OUT})、同步降压-升压型 DC/DC 转换器	效率达 95%,V _{IN} :2.5V 至 5.5V,V _{OUT(MIN)} :2.5V 至 5.5V,I _Q :25μA,I _{SD} :<1μA,MS-10,DFN-12 封装

3468 TA04

0204 · HONG KONG © LINEAR TECHNOLOGY CORPORATION 2003

www.linear.com.cn • info@linear-tech.com.hk