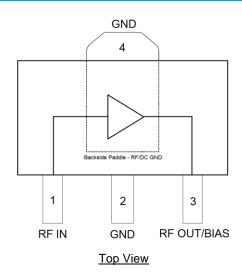
SBB1089Z

50MHz to 850MHz Cascadable Amplifier

Product Overview

The SBB1089Z is a high performance InGaP HBT MMIC amplifier utilizing a Darlington configuration with an active bias network. The active bias network provides stable current over temperature and process Beta variations. Designed to run directly from a 5V supply, the SBB1089Z does not require a dropping resistor as compared to typical Darlington amplifiers. The SBB1089Z product is designed for high linearity 5V gain block applications that require small size and minimal external components. It is internally matched to $50\Omega.$



3-pin SOT-89 Package

Key Features

- 50MHz 850MHz Operational Frequency
- OIP3 = +43.1dBm at 240MHz
- P1dB = +19.6dBm at 500MHz
- Single Fixed 5V Supply
- Robust 1000V ESD, Class 1C
- Patented Thermal Design and Bias Circuit
- Low Thermal Resistance

Functional Block Diagram

Applications

- · Receiver IF Amplifier
- · Cellular, PCS, GSM, UMTS
- Wireless Data, Satellite Terminals

Ordering Information

Part No.	Description
SBB1089Z	7" Reel with 1000 pieces
SBB1089ZPCK1	50MHz to 850MHz PCBA with 5-piece sample bag

Absolute Maximum Ratings

Parameter	Rating
Storage Temperature	−55 to 150 °C
RF Input Power, CW, 50 Ω, T=+25 °C	+24 dBm
Device Voltage (Vcc)	+5.5 V
Device Current (I _{CC})	110 mA
Power Dissipation	0.61 W
Junction Temperature (T _J)	+150 °C

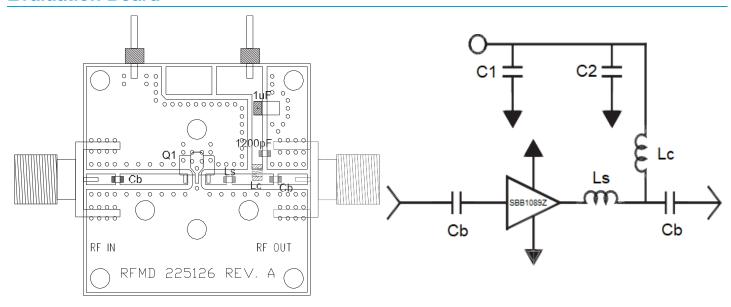
Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device.

Recommended Operating Conditions

Parameter	Min	Тур	Max	Units
Device Voltage (V _{CC})		+5	+5.3	V
T _{CASE}	-55		+105	°C

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions. Application of conditions to the device outside the Recommended Operating Conditions may reduce device reliability and performance.

Electrical Specifications


Parameter	Conditions (1)	Min	Тур	Max	Units
Operational Frequency Range		50		850	MHz
	70MHz		15.5		dB
Gain	240MHz	14	15.5	17	dB
	400MHz	14	15.5	17	dB
Input Return Loss	70MHz to 5000MHz	14	18		dB
Output Return Loss	70MHz to 5000MHz	12	16		dB
·	70MHz		+19		dBm
Output P1dB	240MHz		+19		dBm
·	400MHz	+18	+19		dBm
	Pout = 0 dBm/tone, ∆f = 1 MHz, Center Freq.= 70MHz		+42		dBm
Output IP3	Pout = 0 dBm/tone, Δf = 1 MHz, Center Freq.= 240MHz		+43		dBm
	Pout = 0 dBm/tone, Δf = 1 MHz, Center Freq.= 400MHz	+38.5	+40.5		dBm
Noise Figure	500MHz		3.5	4.2	dB
Reverse Isolation	70MHz to 5000MHz		18		dB
Device Operating Current		82	90	98	mA
Thermal Resistance, θ _{jc}	Junction to case		48.8		°C/W

Notes:

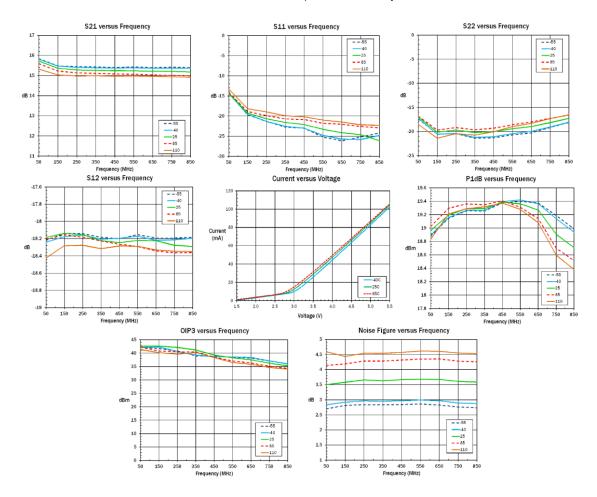
1. Test conditions unless otherwise noted: $V_{CC} = +5.0 \text{ V}$, $I_{CC} = 90 \text{mA}$, Temp= $+25 \,^{\circ}\text{C}$, $50 \,\Omega$ system.

Evaluation Board

Bill of Material

Reference Des.	Value	Description	Manuf.	Part Number
n/a	n/a	Printed Circuit Board	Qorvo	
Q1	n/a	Cascadable Amplifier	Qorvo	SBB1089Z
Cb	8200 pF	CAP, 0603, 10%, 50V, X7R	various	
C1	1 uF	CAP, 1206, 20%, 20V, TANT-A	various	
C2	1200 pF	CAP, 0603, 10%, 50V, X7R	various	
Ls	2.7 nH	IND, 0603, +/-0.3nH	Murata	LL1608-FSL2N7S
Lc	1.2 uH	IND, 1008, 5%	Coilcraft	1008LS-122XJLC

Typical Performance

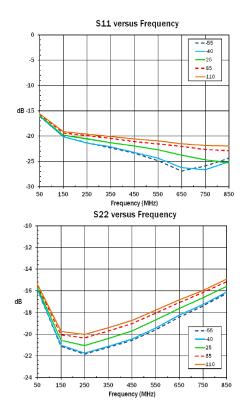

Test conditions unless otherwise noted: V_{CC} = +5.0 V, I_{CC} = 90mA, Temp= +25 °C , 50 Ω system.

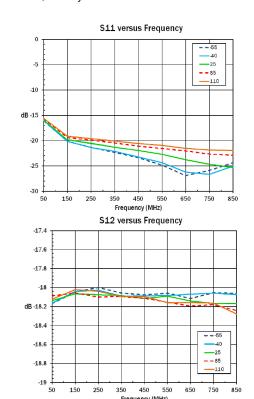
Parameter	Typical Value						Units	
Frequency	50	70	100	240	400	500	850	MHz
Gain	16	15.5	15.5	15.5	15.5	15.5	15.5	dB
Input Return Loss	13	16	17	19	19	19	18	dB
Output Return Loss	18	20	21	23	24	23	17	dB
Reverse Isolation	18	18	18	18	18	18	18	dB
Output P1dB	+19	+19	+19	+19	+19	+19	+18	dBm
OIP3 (1)	+41.5	+42	+43	+43	+41	+40	+35	dBm
Noise Figure	3.5	3.3	3.2	3.1	3.2	3.2	3.4	dB

Notes:

Performance Plots

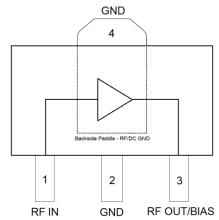
Test conditions unless otherwise noted: V_{CC} = +5.0 V, I_{CC} = 90mA, Temp= +25 °C , 50 Ω system.


4 of 10


^{1.} Pout = 0 dBm/tone, $\Delta f = 1$ MHz

Performance Plots - with BIAS Tees

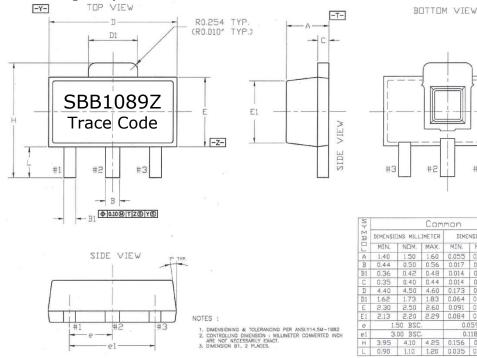
Test conditions unless otherwise noted: V_{CC} = +5.0 V, I_{CC} = 90mA, Temp= +25 °C , 50 Ω system.



Pin Configuration and Description

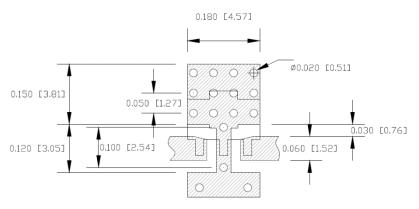
Pin No.	Label	Description
1	RF IN	RF input. External DC Block capacitor required.
2, 4	GND	RF/DC ground. Use recommended via hole pattern to minimize inductance and thermal resistance. See PCB Mounting Pattern for suggested footprint.
3	RF OUT / BIAS	RF output and DC Supply input. External DC Block capacitor and bias voltage required.

DIMENSIONS INCH


MIN.

Package Marking and Dimensions

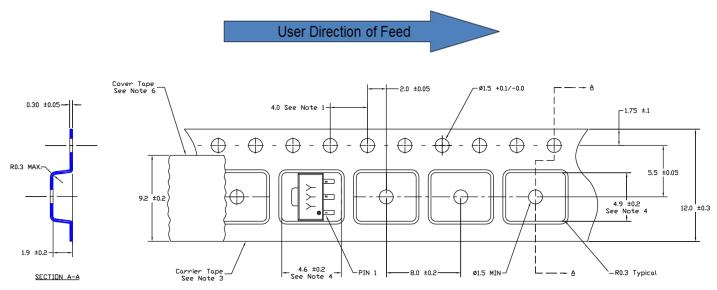
Marking: Part Identifier - SBB1089Z


Trace Code - Assigned by sub-contractor

Notes:

- 1. All dimensions are in millimeters. Angles are in degrees.
- 2. The terminal #1 identifier and terminal numbering conform to JESD 95-1 SPP-012.

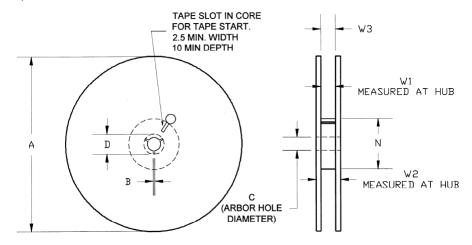
PCB Mounting Pattern



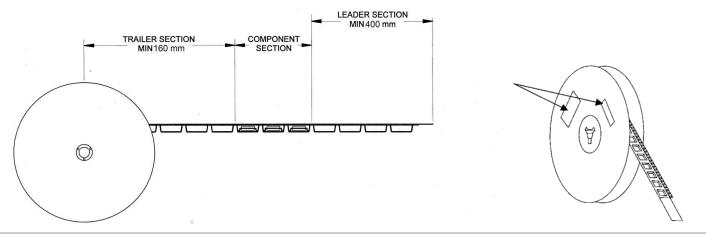
NOTES:

- 1. All dimensions are in millimeters [inches]. Angles are in degrees.
- 2. Use 1 oz. copper minimum for top and bottom layer metal.
- 3. Vias are required under the backside paddle of this device for proper RF/DC grounding and thermal dissipation. We recommend a 0.35mm (#80/.0135") diameter bit for drilling via holes and a final plated thru diameter of 0.25mm (0.01").
- 4. Ensure good package backside paddle solder attach for reliable operation and best electrical performance.

Tape and Reel Information – Carrier and Cover Tape Dimensions


- 1. 10 sprocket hole pitch cumulative tolerance
 2. Camber not to exceed Imm in 100mm
 3. Material: Black Conductive Polystyrene
 4. Measured on a plane 0.3mm above the bottom of the pocket.
 5. Measured from a plane on the inside bottom of the pocket to the top surface of the carrier.
 6. Material: Antistatic Polyester Film

Feature	Measure	Symbol	Size (in)	Size (mm)
	Length	A0	0.181	4.60
Covity	Width	B0	0.193	4.90
Cavity	Depth	K0	0.075	1.90
	Pitch	P1	0.315	8.00
Contarlina Diatanaa	Cavity to Perforation - Length Direction	P2	0.079	2.00
Centerline Distance	Cavity to Perforation - Width Direction	F	0.217	5.50
Cover Tape Width		С	0.362	9.20
Carrier Tape	Width	W	0.472	12.0


Tape and Reel Information – Reel Dimensions

Standard T/R size = 1,000 pieces on a 7" reel.

Feature	Measure	Symbol	Size (in)	Size (mm)
	Diameter	Α	6.969	177.0
Flange	Thickness	W2	0.717	18.2
	Space Between Flange	W1	0.504	12.8
	Outer Diameter	N	2.283	58.0
	Arbor Hole Diameter	С	0.512	13.0
Hub	Key Slit Width	В	0.079	2.0
	Key Slit Diameter	D	0.787	20.0

Tape and Reel Information – Tape Length and Label Placement

Notes

- 1. Empty part cavities at the trailing and leading ends are sealed with cover tape. See EIA 481-1-A.
- 2. Labels are placed on the flange opposite the sprockets in the carrier tape.

Handling Precautions

Parameter	Rating	Standard	
ESD – Human Body Model (HBM)	Class 1C	ESDA/JEDEC JESDC22-A114	
MSL-Moisture Sensitivity Level	Level 3	IPC/JEDEC J-STD-020	-

Caution! ESD-Sensitive Device

Solderability

Compatible with both lead-free (260°C max. reflow temp.) and tin/lead (245°C max. reflow temp.) soldering processes. Solder profiles available upon request.

Contact plating: NiPdAu

RoHS Compliance

This part is compliant with 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄O₂) Free
- PFOS Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: <u>www.qorvo.com</u>
Tel: 1-844-890-8163

Email: customer.support@gorvo.com

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2021 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.